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Abstract

Background: Growing evidence supports the role of gut microbiota in obesity and its related disorders including
type 2 diabetes. Ob/ob mice, which are hyperphagic due to leptin deficiency, are commonly used models of
obesity and were instrumental in suggesting links between gut microbiota and obesity. Specific changes in their
gut microbiota such as decreased microbial diversity and increased Firmicutes to Bacteroidetes ratio have been
suggested to contribute to obesity via increased microbiota capacity to harvest energy. However, the differential
development of ob/ob mouse gut microbiota compared to wild type microbiota and the role of hyperphagia in
their metabolic impairment have not been investigated thoroughly.

Results: We performed a 10-week long study in ob/ob (n = 12) and wild type control (n = 12) mice fed ad libitum.
To differentiate effects of leptin deficiency from hyperphagia, we pair-fed an additional group of ob/ob mice
(n = 11) based on the food consumption of control mice. Compared to control mice, ob/ob mice fed ad libitum
exhibited compromised glucose metabolism and increased body fat percentage. Pair-fed ob/ob mice exhibited
even more compromised glucose metabolism and maintained strikingly similar high body fat percentage at the
cost of lean body mass. Acclimatization of the microbiota to our facility took up to 5 weeks. Leptin deficiency
impacted gut microbial composition, explaining 18.3% of the variance. Pair-feeding also altered several taxa,
although the overall community composition at the end of the study was not significantly different. We found 24
microbial taxa associations with leptin deficiency, notably enrichment of members of Lactobacillus and depletion of
Akkermansia muciniphila. Microbial metabolic functions related to energy harvest, including glycan degradation,
phosphotransferase systems and ABC transporters, were enriched in the ob/ob mice. Taxa previously reported as
relevant for obesity were associated with body weight, including Oscillibacter and Alistipes (both negatively
correlated) and Prevotella (positively correlated).

Conclusions: Leptin deficiency caused major changes in the mouse gut microbiota composition. Several microbial
taxa were associated with body composition. Pair-fed mice maintained a pre-set high proportion of body fat
despite reduced calorie intake, and exhibited more compromised glucose metabolism, with major implications for
treatment options for genetically obese individuals.
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Background
Gut microbiota, the trillions of microbes living in the
gut, can be thought of as a functional metabolic organ
that complements the host’s metabolic apparatus. They
have been associated with many diseases in humans,
including obesity [1], type 2 diabetes [2, 3] and other
metabolic diseases. Recent studies have shown that diet
can rapidly and reproducibly alter the human gut micro-
biota [4] and that transplanting the gut microbiota from
human donors into germ-free mice can reproducibly
transmit donor body composition phenotypes such as
adiposity [5, 6]. Fecal transplants in humans have also
suggested that microbes can improve metabolic health
[7]. These results indicate a potential for manipulating
the gut microbial composition to achieve a desired
phenotype, such as decreasing adiposity and ameliorat-
ing metabolic disorders, and improve human health.
Studies on the leptin-deficient (ob/ob) mouse model for

obesity have shown that, compared to normal wild type
mice, ob/ob mice have markedly different gut microbial
composition and increased capacity to harvest energy
from food [8]. Colonization of germ-free wild type mice
with ob/ob mouse microbiota led to a significantly greater
increase of adiposity compared to colonization from lean
mouse microbiota [8], hinting that this increased capacity
may be transmissible. These results suggest that there is a
bidirectional host-microbial cross-talk where the host se-
lects the microbiota depending on its genotype/phenotype
(e.g., leptin deficiency), and the microbiota influences the
host phenotype (e.g., adiposity). However, studies so far
have not described the longitudinal development of gut
microbiota of ob/ob mice. Thus, we still do not know how
the host and the gut microbiota shape each other over
time in ob/ob mice, and how this process differs from wild
type mice.
We conducted a longitudinal study on ob/ob mice

(OB) and wild type controls (WT) fed ad libitum. We
studied the differences in gut microbiota between ob/ob
and wild type mice in order to understand the effect of
leptin deficiency on the gut microbiota. To further in-
vestigate whether the differences are due to leptin defi-
ciency or hyperphagia, we studied a third group of ob/ob
mice that was pair-fed based on the food consumption
of the wild type mice (OB-PF). We characterized the de-
velopment of their body composition as well as their gut
microbiota, and investigated how these two diverged
over time between these three groups. This setup en-
abled us to identify microbial markers associated with
genetically induced obesity as well as restricted calorie
intake that is commonly used to mitigate obesity.

Results
We obtained mice that were 5 weeks old from a
commercial vendor. We used 16S ribosomal RNA gene

amplicon sequencing (targeting the V4 variable region)
to characterize their fecal microbiota over 9 weeks (W1-
W9) and cecal microbiota in week 11 (Additional file 4:
Table S1). We generated 2.8 million high quality paired-
end reads from 348 samples (average 7866 and minimum
5795 paired-end reads per sample), and bioinformatically
analyzed them using the DADA2 package [9]. Altogether,
the three groups of mice – wild type fed ad libitum (WT),
ob/ob fed ad libitum (OB), ob/ob pair-fed based on con-
sumption of WT mice (OB-PF) – harbored a total of 1136
amplicon sequence variants [10] (ASVs), each potentially
representing an individual microbial strain.

Pair-feeding-induced calorie restriction compromises
metabolism in ob/ob mice
During the course of the study, both WT and OB mice
gradually gained body weight while feeding ad libitum
on normal chow (Fig. 1a). OB mice gained significantly
higher body weight over a 7-week period compared to
WT mice (P < 0.001; Fig. 1b). However, OB-PF mice lost
body weight immediately after the start of pair-feeding
(Fig. 1a). They regained body weight afterwards and
exhibited a net gain in body weight comparable to WT
mice over the study period (Fig. 1b). OB mice continu-
ously gained fat mass throughout the study (Fig. 1c). In
OB-PF mice, pair-feeding did not seem to eliminate fat
accumulation, as they also continuously gained fat mass
during the same period (Fig. 1c), although significantly
less compared to OB mice as indicated by the net gain
over the study (P < 0.001; Fig. 1d). WT mice gained the
lowest fat mass (Fig. 1d) and maintained the highest ab-
solute lean mass among the three groups (Fig. 1g). Inter-
estingly, while both WT and OB mice gradually gained
lean body mass, OB-PF mice lost on average 14.7% of
their lean mass in the first 10 days of calorie-restriction
(Fig. 1g). Despite a slow recovery in the following weeks,
OB-PF mice had a net loss in lean body mass over the
study period, while OB and WT mice had a net gain in
lean body mass (Fig. 1h). Compared to WT mice, OB
and OB-PF mice maintained nearly identical higher fat
mass percentage (Fig. 1e) and nearly identical lower lean
mass percentage (Fig. 1i). Over the study period, the net
gain of fat mass percentage and net loss of lean mass
percentage of OB and OB-PF groups were significantly
higher than that of WT mice (P < 0.001; Fig. 1f, j).
In week 10, we performed an oral glucose tolerance test

(OGTT) to compare the glucose metabolism of the groups.
Prior to the OGTT after 12-h fasting, OB-PF mice showed
significantly increased fasting blood glucose levels com-
pared to both OB and WT mice (P < 0.01 and P < 0.001,
respectively; Fig. 1k, 0min; see Additional file 4: Table S9).
As expected, both OB and OB-PF groups showed impaired
glucose concentration curves during OGTT. While the im-
paired glucose tolerance of the OB-PF mice was more
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pronounced than that of OB mice, the difference between
OB-PF and OB was not statistically significant when con-
sidering the AUC above individual baseline fasting glu-
cose levels (Fig. 1l). This suggests that the perceived
increase was primarily due to the increased fasting
glucose concentrations in OB-PF mice, rather than an
impaired insulin response. Both OB and OB-PF mice

had significantly higher fasting plasma insulin concen-
trations compared to WT mice (P < 0.01 and P < 0.05,
respectively; Fig. 1m, − 60 min). Fifteen minutes after
glucose administration, they also had a significant
increase in plasma insulin compared to the WT mice
(both P < 0.001; Fig. 1n). However, we did not observe
any significant difference between OB and OB-PF

a b

c d e f

g h i j

k l m n

Fig. 1 Body composition monitored from week 2, approximately every second week for 7 weeks. a-b Body weight development (a) and absolute
weight gain (b). c-d Fat mass in grams (c) and absolute change in fat mass (d). e-f Fat mass as percentage of body weight (e) and absolute
change in fat mass percentage (f). g-h Lean body mass in grams (g) and absolute change in lean body mass (h). i-j Lean mass as percentage of
body weight (i) and absolute change in lean mass percentage (j). k Absolute blood glucose levels before and after oral glucose administration
during oral glucose tolerance test conducted in week 10. Both OB-PF-vs-OB and OB-PF-vs-WT comparisons have statistically significant differences
(P < 0.01) following one-way ANOVA. Statistical significance from multiple comparison test following two-way repeated measures ANOVA are
shown using letter-based codes: within each time point, pairs of groups that do not share a letter show statistically significant (P < 0.05)
difference. See Additional file 4: Table S9 for all comparisons. l Area under the curve above baseline blood glucose of individual groups. m-n
Plasma insulin concentration 60 min before and 15 min after glucose was administered orally (m) and increase in plasma insulin (n). Comparisons
with statistically significant differences are denoted with significance levels as: ***P < 0.001, **P < 0.01, *P < 0.05
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mice in either fasting insulin concentrations or their
insulin secretion in response to glucose challenge
(Fig. 1m, n), confirming that OB-PF mice had
comparable insulin resistance to OB mice, which may
reflect the similar fat percentage. OB-PF mice did
exhibit a significantly worse glucose metabolism com-
pared to WT (Fig. 1l, n).

Leptin deficiency, calorie restriction and environment
affect the gut microbial composition
We performed Principal Coordinate Analysis [11] using
Jensen-Shannon Divergence (JSD) to investigate the
variation of the microbial composition over time. JSD is
derived from relative entropy and measures the dissimi-
larity between given two probability distributions [12].
Figure 2 illustrates the variation of the first principal co-
ordinate (PC1) over time, and also between the WT, OB
and OB-PF mice. Even though a few samples were iden-
tified as outliers in some weeks, no mouse was consist-
ently marked as an outlier across weeks. PC1 of the WT
mice was significantly different from the OB and OB-PF
mice during almost all time points (8 and 9, respectively,
out of 9 time points; Wilcoxon rank-sum test, P < 0.05;
Additional file 4: Table S4). Based on PC1, we observed
that during W3-W5 fecal microbial communities of both
OB and OB-PF mice gradually became more similar to
the WT mice (Fig. 2). This was likely due to the
acclimatization of the mice to the new environment in
our animal housing facility. This was then followed by
the stronger influence of leptin deficiency and pair-

feeding during W6-W9. As expected, OB and OB-PF
mice did not show any significant differences between
them on arrival at our animal facility and until 2
weeks of pair-feeding (Wilcoxon rank-sum test, P =
0.898 and P = 0.303 during W1 and W2, respectively).
They gradually diverged from each other starting in
W3 (P = 0.032) and showing significant differences in
W4 and W5 (P = 0.005 and P = 0.0007, respectively).
During W6-W8, they still maintained differences
albeit at a lower statistical significance (0.020 < P <
0.032). During almost all weeks, both OB and OB-PF
mice had a significantly different PC1 score compared
to WT mice (Fig. 2). While both OB and OB-PF mice
diverged from the WT mice in similar directions of
microbial community composition, divergence of OB-
PF showed higher magnitude. This suggests that
starvation experienced by the OB-PF mice or the
severe decrease in lean mass had a strong impact in
shaping the composition of the microbiota.
We then investigated how the primary factors

involved in our study design – leptin deficiency and
pair-feeding – individually affected the gut microbial
composition. We used the permutational multivariate
analysis of variance (PERMANOVA) test on microbial
community dissimilarities (in this case JSD) estimated
in time-stratified pairwise comparisons. We used the
variance explained (R2) in the PERMANOVA test as
an indication of differences in microbial composition
as illustrated in Fig. 3, with R2 = 0 being no variance
explained by the group difference, and R2 = 1

Fig. 2 Separation of gut microbial composition in the three groups. First principle coordinate shows separation of wild-type mice fed ad libitum
(WT), ob/ob mice fed ad libitum (OB) and ob/ob mice pair-fed according to WT intake (OB-PF). Principal coordinate analysis was performed on
fecal samples from weeks 1–9 and cecum sampled at week 11, using Jensen-Shannon Divergence as the beta-diversity measure. Comparisons
with statistically significant differences (see Additional file 4: Table S4) are denoted with significance levels as: ***P < 0.001, **P < 0.01, *P < 0.05

Kashani et al. Animal Microbiome            (2019) 1:11 Page 4 of 16



meaning all variance explained by the group difference.
During the first week, differences in microbial com-
position were the biggest in the OB-vs-WT and WT-
vs-OB-PF comparisons across genotypes. As expected,
prior to pair-feeding, comparison of OB-PF and OB
groups delivered from the same vendor with identical
genotype and feeding regimen did not show statisti-
cally significant differences (R2 = 5.5%; P = 0.319). Just
after acclimatization in W6, the feeding regimen
separated the OB-PF from OB (R2 = 13.0%, P = 0.002),
but its effect reduced by W9 showing only a separation
trend (R2 = 7.5%, P = 0.11), suggesting that the
microbiota was accommodating to the substantial
physiological impact of the feeding regimen. The
across-genotype comparisons at W9 (OB-vs-WT and

WT-vs-OB-PF) both showed substantial separation
(R2 = 18.3% and R2 = 22.9%, respectively, P = 0.001),
suggesting that the ob/ob genotype had a larger effect
on microbial composition.
At termination of the experiment on W11, samples

were taken from cecal content. We compared the
fecal microbiota from W9 to the cecal microbiota at
W11. The difference between compartments explained
only 3.2% of the variance in the microbiome, while
the group (WT, OB or OB-PF) explained 22.2% of
the variance (P = 0.01 and P = 0.001, respectively). This
suggests that the difference between the microbiome
composition of the three groups was significantly
larger than the difference between fecal and cecal
microbiota.

Fig. 3 Separation of microbial profiles of mice in the three groups: wild-type mice fed ad libitum (WT), ob/ob mice fed ad libitum (OB) and ob/
ob mice pair-fed according to WT intake (OB-PF). PERMANOVA tests were performed for the different time points comparing pairs of the three
groups. For each pair of groups, variance (R2) explained by the group membership estimated by PERMANOVA test is shown. Shapes denote
whether the groups were significantly different during the comparison

Kashani et al. Animal Microbiome            (2019) 1:11 Page 5 of 16



Lack of consistent associations between gut microbial
alpha diversity and obesity
We looked for associations between individual body
weight and microbial alpha diversity measures using
linear mixed models. Both ASV richness and Shannon
diversity were significantly negatively associated with
body weight (P = 0.036 and P = 0.0024, respectively;
Additional file 4: Table S2), suggesting that gut microbial
diversity may be associated with individual body weight.
We compared ASV richness and Shannon diversity be-

tween the groups over time. Neither the fecal microbiota
nor the cecal microbiota showed any significant
differences in ASV richness between WT and OB mice
(Fig. 4a; Wilcoxon rank-sum test, P > 0.23; see
Additional file 4: Table S3). However, OB-PF mice
exhibited significantly higher richness compared to OB
in W4 (Wilcoxon rank-sum test, P = 0.024). During
W2 and W3, both OB and OB-PF mice showed
significantly higher fecal microbial diversity than WT
mice, measured by Shannon index (Fig. 4b; Wilcoxon
rank-sum test, P < 0.005). OB-PF mice also had
higher Shannon index compared to WT in W4 and

W6; and also had higher Shannon index compared to
OB in W3 and W4 (Wilcoxon rank-sum test, P < 0.05).
We then compared Firmicutes to Bacteroidetes (F/B)

ratios of cecal and fecal microbiota between the WT and
OB mice. F/B ratio of cecal microbiota was not
significantly different between the two groups (Fig. 4c;
Wilcoxon rank-sum test, P = 0.55). When comparing
their fecal microbiota, OB mice exhibited a significantly
higher F/B ratio compared to WT mice only during W1
and W2 (Wilcoxon rank-sum test, P < 0.005, see
Additional file 4: Table S3), and borderline significant
higher F/B ratio during W3 (P = 0.064). We did not ob-
serve any significant difference between WT and OB mice
during other weeks (Wilcoxon rank-sum test, P > 0.35).

Consistent gut microbial features associated with leptin
deficiency
We searched for differentially abundant ASVs between
the groups using pairwise comparisons. We used the
negative binomial Wald test for pairwise comparisons
during each week, and identified several ASVs that were
differentially abundant (Additional file 1: Figure S1 and

a

b

c

Fig. 4 Overall characteristics of the gut microbiomes sampled from weeks 1–9 and cecum sampled at week 11. a-b Gut microbial alpha diversity
of wild-type mice fed ad libitum (WT), ob/ob mice fed ad libitum (OB) and ob/ob mice pair-fed according to WT intake (OB-PF). Two different
measures are shown: observed ASV richness (a) and Shannon diversity (b). c Firmicutes to Bacteroidetes ratios in gut microbiota of WT, OB and
OB-PF mice, shown in log-scale. Comparisons with statistically significant differences are denoted with significance levels as: ***P < 0.001,
**P < 0.01, *P < 0.05
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Additional file 4: Table S8). Number of differentially
abundant ASVs between WT and OB groups decreased
from 50 in W2 to 6 in W3. We did not find any differen-
tially abundant ASVs between WT and OB groups dur-
ing W4–W5, which agrees with the convergence of OB
group towards WT group in Fig. 2. In order to eliminate
the acclimatization process as a confounding factor, we
compared samples only from W6 to W9, while control-
ling for age using Wilcoxon rank-sum test. We identified
43, 77 and 28 ASVs that were differentially abundant in
WT-vs-OB, WT-vs-OB-PF and OB-vs-OB-PF compari-
sons, respectively (P < 0.05; Additional file 4: Table S5).
To investigate changes associated with the ob/ob geno-
type regardless of pair-feeding, we identified taxa that
were consistently differentially abundant in both OB and
OB-PF groups compared to WT group. We observed
that 10 ASVs were enriched in the ob/ob phenotype and
18 ASVs were depleted. Two ASVs from Lactobacillus,
one ASV from Anaerostipes and one ASV from Clostrid-
ium cluster IV were notable among those enriched in
ob/ob phenotype (Fig. 5). Two ASVs from Alistipes, two
ASVs from Oscillibacter, one ASV each from Clostrid-
ium clusters XIVa and IV, and an ASV from Akkerman-
sia muciniphila were notable among those depleted in
ob/ob phenotype (Fig. 5).
We predicted the microbial functional potential

profiles from the taxonomic abundance profiles using
Piphillin [13]. We identified 14, 11 and 2 KEGG path-
ways that were differentially abundant in WT-vs-OB,
WT-vs-OB-PF and OB-vs-OB-PF comparisons, respect-
ively; and 39, 72 and 8 KEGG orthologous groups that
were differentially abundant in WT-vs-OB, WT-vs-OB-PF
and OB-vs-OB-PF comparisons, respectively (P < 0.05;
Wilcoxon rank-sum test controlled for age; Additional file
4: Table S6). Similar to taxonomic analysis, we looked for
consistent differential abundance of functional potential in
both OB and OB-PF mice compared to WT mice. In ob/
ob mice, we observed an enrichment of three KEGG path-
ways and 29 KEGG orthologous groups, together with a
depletion of one pathway (Glycosphingolipid biosynthesis
- ganglio series) and five orthologous groups (P < 0.05;
Wilcoxon rank-sum test controlled for age; see Additional
file 4: Table S6 for full list). We observed the enrichment
of the phosphotransferase system (PTS) pathway, glutathi-
one metabolism pathway, 7 orthologous groups corre-
sponding to ABC transporters including 3 polar amino
acid transport systems, 5 orthologous groups correspond-
ing to PTS system and 2 orthologous groups correspond-
ing to glycan degradation.

Temporal modelling of microbial networks reveals
differential topology
We elucidated the community structure of the micro-
biome by incorporating temporal information via the

concept of Granger-causality. Despite the name,
Granger-causality does not establish causality in the
classical sense, but in the rather narrow sense that
one member of the community can predict another,
making a stronger suggestion that they might be
causally linked rather than mere correlation. In par-
ticular, Granger-causality is not well-suited for unob-
served variables that might drive the variation in
both the predicted and the independent members.
Thus, we performed this analysis only within treat-
ment groups using genus level abundances, to ob-
serve the behaviour of the microbiota within the
major driver of variation. This resulted in a directed
network suggesting which genera can predict other
genera (Fig. 6). OB-PF, OB and WT groups had 6, 7
and 8 connections, respectively. We observed that
Prevotella was an important node in all networks. Its
abundance could be predicted by several low-abundance
Gram-positive genera. WT mice also had Alloprevotella
predicted by Roseburia. Pearson correlation between Allo-
prevotella abundances and time-lagged Roseburia abun-
dances revealed that the association was negative (PCC =
− 0.86, P = 0.006). OB and OB-PF mice had many connec-
tions between less abundant clades and highly abundant
Bacteroidetes genera such as Prevotella, Bacteroides and
Alistipes. In OB mice, the time-lagged abundances of
Vampirovibrio were strongly positively correlated with
Alistipes (PCC = 0.93, P = 0.0006). This pattern was dis-
rupted in the OB-PF group, where other genera were pre-
dictive of Alistipes.

Gut microbial members associated with host body
composition and metabolic phenotype
We looked for associations between members of the
gut microbiota and host metabolic parameters. Since
the three groups of mice exhibited different meta-
bolic states, we performed the analysis for each
group independently. First, for OGTT-AUC and 2-h
insulin concentrations estimated only once at W10,
we estimated the Spearman correlation coefficient
between ASVs and the phenotype of interest. We
only considered associations with absolute Spear-
man’s ρ above 0.4 and adjusted p-value below 0.05
(Additional file 4: Table S7a ,b). One ASV from
Ruminococcaceae family negatively correlated with
OGTT-AUC only in the OB group (ρ = − 0.9). Three
Bacteroidales ASVs correlated with 2-h insulin con-
centrations, also only in the OB group – one ASV
each from Bacteroides acidifaciens and Alistipes cor-
related positively, while an ASV from Muribacula-
ceae family correlated negatively.
We then investigated correlations of taxa with the

various body composition measurements collected over
10 weeks – body weight, lean body mass and fat mass

Kashani et al. Animal Microbiome            (2019) 1:11 Page 7 of 16



(all in grams). Age was highly correlated with these mea-
surements (body weight: ρ > 0.74 in all groups; lean
body mass: ρ > 0.63 in WT and OB groups; fat mass:
ρ > 0.81 in OB and OB-PF groups). Therefore, we
constructed linear mixed models to adjust for the ef-
fect of age and the individual mice (Additional file 2:
Figure S2; see Additional file 4: Table S7c-e for asso-
ciated ASVs). We found that 21 ASVs were associated
with overall body weight in OB group, 8 ASVs were
associated in OB-PF group, but none in WT group
(Additional file 4: Table S7c). Among these, Muriba-
culaceae, Lachnospiraceae and Ruminococcaceae
families had multiple ASVs associated. We found 9
ASVs to be significantly associated with lean body

mass in the WT group (all negatively) and 13 ASVs
in the OB-PF group (12 negatively). Finally, 3 ASVs
were negatively associated with fat mass in the OB
group.

Discussion
We performed a longitudinal study investigating the de-
velopment of gut microbiota in three groups of mice:
wild type controls fed ad libitum (WT), leptin-deficient
ob/ob mice fed ad libitum (OB), and ob/ob mice fed on
par with WT controls (OB-PF). We found that the gut
microbiota underwent drastic changes over a 5-week
long process, where the ob/ob (both OB and OB-PF)
and WT gut microbiota converged towards each other.

Fig. 5 Microbial taxa that are differentially abundant in ob/ob mice. In total, 28 ASVs were consistently differentially abundant during weeks 6–9
in both OB and OB-PF mice compared to WT mice. Twelve ASVs annotated at least to the genus level are shown here. Library size normalized
read counts are shown for each week within each group. Four ASVs in the first row are enriched in ob/ob mice, and eight ASVs in second and
third rows are depleted in ob/ob mice
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We hypothesize that this trend was the effect of the
acclimatization process in a new environment in our
animal facility influencing the gut microbiota of the
three groups to become more similar during W1-W5,
as has been shown previously [14]. Contrary to a
recent study suggesting a shorter acclimatization
period of 7 days [15], our results suggest that this
period could be significantly longer.
Leptin deficiency leads to constant hunger, which leads

to hyperphagia and obesity. We clearly see this trend in
our OB mice fed ad libitum. These mice also continu-
ously gained fat mass – while WT mice maintained an
almost constant fat mass percentage around 10%, OB
mice increased their fat percentage from 40% in W1 to
55% in W8. These findings agree with a previous report
[16]. These results suggest that leptin deficiency repro-
grams the mice to preserve a pre-set high proportion of
body fat. It appears to be irrespective of calorie intake,
as OB-PF mice achieved this high fat proportion, despite
consuming only 50–70% of the calories as OB mice
(Additional file 3: Figure S3). They appear to achieve this
also by losing lean mass when necessary, thereby having
significantly lower absolute lean mass compared to OB
mice, thus exhibiting a net loss in lean body mass over
the study period. This suggests that the body likely de-
fends fat mass over lean body mass, where insulin resist-
ance could be instrumental in preserving fat mass (that
normally leads to obesity). Based on the OGTT glucose
concentration curves, OB-PF mice had worse glucose
metabolism than OB mice, who themselves were worse
than WT. However, after adjusting for individual base-
line blood glucose values, only OB-PF mice had signifi-
cantly higher AUC from the OGTT curves compared
to WT mice. OB-PF mice had elevated fasting glucose
concentrations, yet showed a significantly higher AUC

compared to WT mice even after adjusting for individ-
ual baseline glucose values. This could be an important
mechanism behind the OB-PF mice regaining fat mass.
Both the OGTT curve and longitudinal trend in the lean
body mass suggest that OB-PF mice unexpectedly had a
higher magnitude of compromised glucose metabolism
compared to OB mice. This needs to be considered for
treatment of leptin-deficient obese humans, as simply
reducing calories to that of a healthy person’s intake may
not reduce the body fat percentage, and might even
worsen metabolism. Our results also raise an interesting
question whether lean mass decline during starvation
could be a proxy for fat mass preservation ability,
thereby helping us choose appropriate therapy for
obese individuals.
Summary metrics of the microbiome, such as the F/B

ratio and alpha diversity, have received a lot of attention
in the literature. Many of these observations are cross-
sectional, i.e. a single observation collected from a group
of humans or mice. This has led to both conflicting re-
ports within host species and doubts about translation
across host species. Evaluating cecal microbiota of ob/ob
mice and lean littermates, Ley et al. reported that F/B
ratio was lower in obese mice than in lean mice [17].
This was later confirmed and elaborated that the altered
microbiota had an increased capacity to harvest energy
[8]. Later studies reported conflicting results about
associations between obesity and alpha-diversity, both in
mice [16] and in humans [18, 19].
Here we systematically evaluated gut microbial alpha

diversity and F/B ratio as markers of obesity in mice in a
longitudinal setup and found inconsistent trends over
time. We observed several timepoints at which statistically
significant differences between groups were present, but
there was no strong omnipresent trend for any group.

Fig. 6 Granger-causality networks at genus level. Granger-causality networks were made for the three groups: wild-type mice fed ad libitum (WT),
ob/ob mice fed ad libitum (OB) and ob/ob mice pair-fed according to WT intake (OB-PF). Node size reflects the relative abundance of the genus,
and node color denotes the phylum
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Obviously, cross-sectional sampling at these points would
have led to conclusions that might not be observed in the
preceding or following weeks. This suggests that the
inconclusive body of literature so far might be the result
of observing a static picture of the dynamic ecological
priority effects intertwined with the inherent residual
confounding occurring when a group of free-living
humans is chosen for a study based on a complex pheno-
type such as obesity.
OB mice had 43 differentially abundant ASVs com-

pared to WT mice, suggesting that this phenotype could
be exerting fat mass preserving strategies at least par-
tially through the microbiota. However, OB-PF mice had
77 differentially abundant ASVs compared to WT mice,
and 28 such ASVs compared to OB mice. OB-PF mice
were under stress, starving, and potentially influenced by
a biological mechanism to preserve fat mass, which
could be driving these additional changes in their gut
microbiota. We observed that 28 ASVs were differen-
tially abundant in both OB and OB-PF groups compared
to WT. Leptin plays an important role in immune re-
sponses and inflammation, and is suggested to be part of
the cytokine cascade that is behind host defense mecha-
nisms [20]. This could explain the high number of
differentially abundant ASVs in the gut microbiota of
the ob/ob mice.
We observed an enrichment of two ASVs under genus

Lactobacillus in ob/ob mice, which is surprising as
Lactobacillus spp. are considered beneficial. While some
studies have reported positive association between
Lactobacillus spp. and obesity [21, 22], there are others
that showed beneficial effects of probiotic supplementa-
tion with Lactobacillus on obesity [23]. Even systematic
reviews performed by different authors came to
contradictory conclusions on the effect of Lactobacillus
supplementation on body weight and BMI [24, 25]. As
suggested previously, the role of Lactobacillus spp. in
obesity needs to be investigated further in better-de-
signed studies [23].
One of the five Lachnospiraceae ASVs enriched in ob/

ob mice was a member of Anaerostipes genus. A previ-
ous study demonstrated that strain AJ110941 closely
related to Anaerostipes contributed to metabolic dys-
function of ob/ob mice [26]. One of the five Lachnospir-
aceae ASVs depleted in ob/ob mice belonged to
Clostridium cluster XIVa, which are major butyrate pro-
ducers in gut [27], supporting a link between inflamma-
tion and obesity. Cani et al showed that members of this
cluster were decreased in high-fat-diet-fed obese mice
that also showed increased metabolic endotoxemia [28].
We also observed a depletion of Akkermansia mucini-

phila in the ob/ob mice. A. muciniphila is a mucin-de-
grading Gram-negative bacterium, which resides in the
mucus layer. Abundance of this species has been widely

reported to associate negatively with body fat and glu-
cose intolerance in mice and in humans [29–31].
Administration of A. muciniphila prevented the develop-
ment of obesity and associated complications, leading to
correction of metabolic endotoxemia in obese and
diabetic mice [31], suggesting that the depletion of A.
muciniphila in ob/ob mice could be more than just an
association.
At the microbiome functional level, enrichment of

PTS enzymes in both OB and OB-PF mice is in accord-
ance with previous reports [32]. PTS is found only in
bacteria where it catalyzes the transport and phosphoryl-
ation of numerous monosaccharides, disaccharides,
amino sugars, polyols, and other sugar derivatives into
the bacterial cell. Our results strengthen the previous
hypothesis of increased energy harvest in microbiome of
the ob/ob mice [33]. PTS enzymes have also been
reported to be enriched in human fecal microbiota of
obese and inflammatory bowel diseases patients [34]. A
previous study had demonstrated that high-fat carbohy-
drate diet in humanized gnotobiotic mice correlates with
an enhanced proportion of PTS and ABC transporters
[18]. While there was no significant difference in PTS
enzymes between OB and OB-PF mice, the enrichment
level compared to WT mice was higher in OB-PF mice
than in OB mice. This additional increase in PTS could
also be linked to an increased ability of microbes to
assimilate all available sugars to compensate for the
reduced dietary intake in OB-PF mice, as proposed
previously [35]. This observation is unique to our study
design that could evaluate the energy harvest capacity of
ob/ob mice under starvation.
Microbial networks have emerged as an important tool

for investigating the ecology of microbiomes. While
many networks have been generated in cross-sectional
settings [3, 36], longitudinal sampling can add additional
information about dynamics that otherwise cannot be
observed [37]. Granger-causality networks [38] use lon-
gitudinal information to explore possible causal connec-
tions in the microbiota. Our networks suggest
different ecological interactions in the different groups,
suggesting that genotype alone may not drive such inter-
actions. There are many possible ways bacteria could
causally influence abundance such as competition, cross-
feeding of nutrients, quorum sensing, changing of micro-
environments and active killing via secondary metabolites.
For example, active killing could be a venue of further
investigation for the interactions between Roseburia and
Alloprevotella, as members of the Roseburia clade have
been known to produce several bacteriocins [39, 40], and
the abundance of Roseburia in a given week was negatively
associated with Alloprevotella abundance in the following
week. Similarly, the OB group has the curious case of
Vampirovibrio, which is low-abundant but seemingly
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predictive of several Gram-negative clades. Some mem-
bers of Vampirovibrio are known to be predators of other
bacteria, presumably using type VI secretion systems [41],
and interestingly have previously been isolated from hu-
man gut [42]. Such predatory activities might underlie the
negative effect of Vampirovibrio on other bacteria.
Longitudinal associations via correlations of glucose me-

tabolism, insulin secretion, body weight, lean body mass
and fat mass suggested many taxa that could be related to
body composition. Interestingly, all 14 ASVs from Firmi-
cutes associated with body weight in the OB group showed
only negative correlations. Prevotella, positively correlated
with body weight in the OB group, has been associated
with insulin resistance in humans [43]. Alistipes, nega-
tively correlated with both fat mass and body weight in
the OB group, has previously been shown to be enriched
in human obesity and type 2 diabetes [44]. More import-
antly, it was also shown to be enriched in people who suc-
ceeded in weight loss intervention [45], agreeing with the
negative correlation found in our study. Further studies
are needed to characterize whether the associated micro-
bial taxa found in our study indeed contribute to changes
in the body composition of mice.

Conclusions
Our results demonstrate that leptin-deficient ob/ob mice
have a unique gut microbial composition that progres-
sively and consistently differs from the wild type mice
over time, with severe changes in the microbial network
topology. Several microbial taxa were associated with
body composition, suggesting a host-microbial cross-talk
in metabolism. We highlight that despite a reduced cal-
orie intake on par with wild type mice, pair-fed ob/ob
mice maintained a high body fat percentage, which oc-
curred concomitantly with a net loss in lean body mass
and an impaired glucose metabolism. Future research
into treatment options for genetically obese patients
should take these into consideration.

Methods
Mice and experimental design
Description of mice
Ob/ob mice and lean control mice (ob/+ and +/+
littermates of ob/ob mice) with C57BL/6 J genetic back-
ground were purchased from Janvier Labs. They were
maintained on a 12-h light/12-h dark cycle with lights
off at 6 pm and individually housed throughout the
study. The animals were 5 weeks old when the study
started.

Study design
We conducted a longitudinal study on the ob/ob and
lean wild type control mice with C57BL/6 J genetic back-
ground. Lean wild type control mice were fed ad libitum

(referred to as WT, n = 12). Half of the ob/ob mice were
fed ad libitum (referred to as OB, n = 12) whereas the
other half were fed based on the average food intake in
the WT group. We refer to this group as the pair-fed
group (OB-PF, n = 11). The average daily food intake
per mouse in the WT group was calculated based on the
weekly consumption and the same amount of food was
subsequently given to OB-PF mice. The food intake data
are shown in Additional file 3: Fig. S3. Due to the
capacity of equipment, the mice were handled in two
batches, where batch B entered the experiment 1 week
later than batch A. Each batch consisted of all 3 groups
with 5–6 animals each. To characterize the development
of the gut microbiota and investigate microbial changes
over time among groups, fresh fecal samples were col-
lected once per week for nine consecutive weeks. Cecum
content was harvested at the end of the study when the
animals were euthanized. Body composition and weight
of the animals were measured approximately every
second week, starting from week 2. OGTT was con-
ducted in week 10. In week 11, the animals were eutha-
nized and the cecum content was collected.

Diet composition
The diet used in this study was Altromin 1319 - Extrude
(Altromin Spezialfutter GmbH, Germany) which is a
cereal-based formula and designed as complete feed for
rats and mice. Its metabolized energy is ~ 3339 kcal/kg,
14% from fat, 27% from protein and 59% from carbohy-
drates. Its content of crude nutrients and moisture is
11.1% moisture, 6.1% crude ash, 4.5% crude fibre, 5.1%
crude fat, 22.5% crude protein and 50.7% Nitrogen-free
extractives.

Measurements during the study
Body composition: Body composition of the mice in-
cluding fat and lean mass was determined by quanti-
tative magnetic resonance imaging (MRI) using
EchoMRI (Echo Medical Systems, Houston, TX,
USA).
OGTT: Mice were fasted for 12 h from 9 pm with free

access to water. Glucose (1.5 g/kg body weight) was
administered orally. Concentrations of blood glucose
were measured with a handheld glucometer (Ascensia
Contour Glucometer, Bayer) using blood obtained from
the punctures on the tail along a time course before and
after glucose load. At time points of -60 and 15 min,
blood samples were collected from the orbital sinus
for insulin analysis (Sensitive Insulin RIA kit, Linco
Research).

Collection of fresh feces and cecum content
Once per week, freshly defecated feces were directly
collected into eppendorf tubes and frozen immediately
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in liquid nitrogen. At the end of the study, the whole in-
testinal tract was dissected. The cecum was cut off and
then cut open. The content was scooped out, transferred
into an eppendorf tube and immediately frozen in liquid
nitrogen. All the samples were stored at -80 °C until fur-
ther analysis.

Microbiome analysis
DNA extraction, 16S rRNA library preparation and
sequencing
Genomic DNA was isolated from 200mg of fecal samples
using the NucleoSpin Soil kit (Macherey-Nagel GmbH &
Co. KG, Germany) following manufacturer’s instructions.
SL2 + Enhancer buffer SX were used as the cell lysis buf-
fer, the subsequent vortex step was replaced with repeated
bead beating. DNA yield, purity and integrity were
assessed using a Qubit 2.0 fluorometer, a NanoDrop 2000
spectrometer (Thermo Fisher Scientific Inc., MA USA)
and agarose gel electrophoresis, respectively. Library prep-
aration with polymerase chain reaction (PCR) amplifica-
tion was performed using 20 ng bacterial DNA, 0.2 μM of
each barcoded forward and reverse primer, and HotMas-
terMix (5 Prime) solution in a total volume of 25 μl. To
target the variable region 4 (V4) of the 16S rRNA gene, a
forward primer 515F (5′ AATGATACGGCGACCACC-
GAGATCTACAC<i5>TATGGTAATTGTGTGC-
CAGCMGCCGCGGTAA 3′) and a reverse primer 806R
(5′ AAGCAGAAGACGGCATACGAGAT<i7>AGTC
AGTCAGCCGGACTACHVGGGTWTCTAAT 3′) were
used; each primer consisted the appropriate Illumina
adapter, an 8-nt index sequence i5 and i7, a 10-nt pad se-
quence, a 2-nt linker, and the gene-specific primer [46,
47]. The PCR reaction conditions were 3min at 94 °C,
followed by 28 cycles of 20 s at 94 °C, 30 s at 55 °C and 54
s at 72 °C on an Eppendorf thermocycler (Eppendorf AG,
Germany). Amplicons were purified with a magnetic-bead
based clean-up and size selection kit (Macherey-Nagel
GmbH & Co. KG, Germany). Amplicons were visualized
by gel electrophoresis and quantified by a Qubit 2.0
fluorometer. A master DNA pool was generated from the
purified products in equimolar ratios. The DNA was se-
quenced using an Illumina MiSeq platform (MiSeq Re-
agent Kits v2, 500 cycles), generating a total of 14,657,899
paired-end reads. After removing 2 samples with insuffi-
cient sequencing depth (<100 paired-end reads each), we
obtained 348 samples varying from 9327 to 114,923 with
median 38,930 paired-end reads per sample.

Sequence analysis and building taxonomic abundance table
We used the high-resolution DADA2 method [9] to
infer the exact sequences from amplicons. Unlike OTUs,
this does not impose any arbitrary threshold and thereby
obtains inferred amplicon sequence variants (ASVs) that
differ by as little as one nucleotide [10].

Based on the FastQC [48] plots of sequence reads, we
chose to truncate the forward and reverse reads at pos-
ition 240 and 150 respectively. In addition, we trimmed
the first 10 nucleotides of each read (trimLeft = 10)
based on empirical observation across our previously se-
quenced samples as well as recommendation by DADA2
developers [49]. We discarded reads with any ambiguous
nucleotides (maxN = 0) as well as filtered out reads with
more than two expected errors (maxEE = 2). We de-rep-
licated the final sequences in order to remove redun-
dancy. We finally generated 7.3 million high quality
paired-end reads from 348 samples (average 21010 and
minimum 5795 paired-end reads per sample).
DADA2 can correct sequencing errors through a prob-

abilistic noise model for wrong base calls by incorporat-
ing both the quality scores and sequence frequencies.
We estimated the error rates using 180 out of 348
samples. We used the per-sample inference mode
(pool = FALSE). We removed chimeric sequences using
removeBimeraDenovo function. We used assignSpecies in
combination with RDP species-level training set version
14 database provided with DADA2 to assign taxonomy
to ASVs. Finally a phyloseq (v 1.19.1) object [50] was
generated within the R environment to proceed for the
analysis. We excluded ASVs with unknown phylum as-
signment, which could be artifacts. This resulted in 1136
ASVs.

Resolving ambiguous taxonomic assignments in
Porphyromonadaceae family
A recent study described a novel family in Bacteroidetes
phylum, which is dominant in mouse gut microbiota,
and proposed that it should be named Muribaculaceae
[51]. Currently, this novel family is part of Porphyromo-
nadaceae family in RDP database but resolved separately
as Bacteroidales S24–7 family in SILVA database. Our
taxonomic annotation procedure using RDP classified all
ASVs from this novel family as Porphyromonadaceae
spp. However, the newly reported [51] phylogeny of
clades related to Porphyromonadaceae family is more
accurate than the RDP phylogeny we used. Therefore, to
better resolve taxonomic assignments of these taxa, we
re-annotated 102 ASVs originally assigned by RDP to
Porphyromonadaceae family using the database from the
integrated Mouse Gut Metagenomic Catalog [52]
(https://github.com/tillrobin/iMGMC, commit 53d5583).
Among them, 20 could not be annotated by this database
and we thus kept the original taxonomic annotation from
RDP. Of the rest, 72 were reclassified as Bacteroidales S24–
7 group at family level, 2 assigned to Bacteroidales at order
level, and only 8 remained in Porphyromonadaceae family.
ASVs with this altered taxonomy are marked in Additional
file 4: Tables S5 and S7. Throughout the manuscript, we
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refer to Bacteroidales S24–7 family as Muribaculaceae to
be consistent with the newly proposed nomenclature.
To investigate if there were batch effects, for each time

point we compared the two batches within each group
(WT, OB, and OB-PF) using two methods of differential
abundance (Wilcoxon ranksum test and DESeq2) and
did not find any ASVs that were differentially abundant.

Predicting microbial functional potential
We predicted the microbial functional potential profiles
from the taxonomic abundance profiles using Piphillin
[13]. As input, we used ASVs after excluding taxa with
average relative abundance less than 0.01% across samples,
and prevalence of < 10% all 9 weeks of the study. Inference
was run with default parameters at the Piphillin web re-
source (https://piphillin.secondgenome.com). Profiles were
obtained at KEGG orthologous group and pathway levels.

Statistical analyses
Statistical analysis of animal body composition and glucose
metabolism data
Data are presented as mean ± SE and were analyzed
using statistical software GraphPad Prism 7 (GraphPad,
San Diego, CA, USA). One-way ANOVA or two-way re-
peated measures ANOVA followed by Tukey’s multiple
comparisons test was carried out. Results were consid-
ered significant when P < 0.05.

Rarefaction and library size normalization
For fair estimations of alpha-diversity (ASV richness and
Shannon diversity), samples were rarefied to 5795 reads.
Rarefaction was not performed for Firmicutes to
Bacteroidetes ratio, as this ratio will not be affected by
sequencing depth. These rarefied estimates were used in
(i) groupwise comparisons of alpha-diversity and (ii)
associations between alpha-diversity and phenotypes.
For accurate estimation ASV abundances across sam-

ples, we used DESeq2 (v 1.14.1) for normalizing our read
count data of all 1136 ASVs to adjust for the sequencing
library size [53]. These normalized counts were used for
(i) ASV differential abundance tests using DESeq2 for
estimating batch effects, (ii) overall ASV differential
abundance tests using Wilcoxon rank-sum tests consist-
ent across W6-W9, (iii) ASV differential abundance tests
using DESeq2 within each time point and (iv) associ-
ation between ASV abundances and phenotypes. When
sequencing depth is above ~ 1000 sequences per sample
(which is the case for our study with minimum 5795 se-
quences per sample), rarefaction is not more effective
than other normalization techniques, but library size
must be accounted for [54]. Additionally, in differential
abundance analysis, rarefaction leads to lower power be-
cause data has been thrown away [54, 55]. Therefore, we
preferred DESeq2 library size normalization rather than

rarefaction. Since DESeq2 library size normalization
does not affect relative abundance data, differential
abundance tests using Wilcoxon rank-sum test and beta
diversity analysis using ASV relative abundance (see
below) are unaffected by this library size normalization.

Alpha diversity and Firmicutes to Bacteroidetes (F/B) ratio
Alpha diversity was computed using phyloseq’s plot_
richness() function after rarefying the data to 5795 reads
per sample. We used Wilcoxon test implemented in the
coin (v 1.2.2) package [56] to assess differences between
groups in terms of ASV richness, Shannon diversity and
F/B ratio within each week.

Beta diversity
We filtered out taxa with average relative abundance less
than 1% across samples. We estimated beta diversity
using Jensen-Shannon divergence (JSD) as implemented
in phyloseq [50]. PERMANOVA analysis was performed
on the resulting distance table using adonis2 function
implemented in the vegan package [57] with 999 permu-
tations. First principal coordinate (PC1) based on JSD
was compared between groups within each week.

Differential abundance tests
For differential abundance analysis, we excluded taxa
with average relative abundance less than 0.01% across
samples, and prevalence of < 10% all time points (9 weeks
of fecal samples and cecal samples at termination). This
resulted in 337 ASVs.
For samples from a given week, we used the negative

binomial Wald test implemented in DESeq2 for differen-
tial abundance analysis of pairs of groups. Taxa with
adjusted p-value less than 0.05 (as estimated by DESeq2)
were considered statistically significant.
We used the Wilcoxon test implementation in the coin

(v 1.2.2) package with week number (time) as blocking
factor to identify taxa that were consistently significantly
different during W6-W9. DESeq2 cannot perform such an
analysis by modeling the effect of time. The fold change
was calculated as the average over medians of variation of
taxa in a given group across time, over the same quantity
in another group. All reported p-values are adjusted for
multiple hypothesis testing using Holm’s sequential
rejection procedure. Taxa with adjusted p-value less than
0.05 were considered statistically significant.
We also used Wilcoxon test implementation in the

coin (v 1.2.2) package with week number (time) as
blocking factor to identify functions (KEGG pathways
and KEGG orthologous groups) that were significantly
different during W6-W9. We excluded pathways or
orthologous groups with average relative abundance less
than 0.1% across samples. All reported p-values are
adjusted for multiple hypothesis testing using Holm’s
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sequential rejection procedure. Functions with adjusted p-
value less than 0.05 were considered statistically significant.

Assessing significant association of alpha diversity with
metabolic phenotype
Alpha diversity was computed using phyloseq’s plot_
richness() function after rarefying the data to 5795
reads per sample. Models were fitted with the lme4 R
package [58], using the phenotypes (body weight, lean
mass, and fat mass) as outcomes and the alpha diver-
sity as predictor, adjusted for group and time. Effect
sizes (betas) and FDR-adjusted p-values are reported
in Additional file 4: Table S2.

Assessing significant association of ASV relative
abundances with metabolic phenotype
To model the outcomes body weight, lean body mass
and fat mass using microbial features, linear mixed
models were fitted using the lme4 package [58] within
each group, for every ASV with mean relative abun-
dance higher than 0.01% within that group. Z-scored
(standard scores obtained using mean and standard
deviation of all observations of an ASV) relative ASV
abundances and time were used as fixed effects, while
animal identifiers were modeled as a random inter-
cept. P-values for ASV beta coefficients were obtained
through the lmerTest package [59] using the
Satterthwaite method. For OGTT-AUC and 2-h
insulin concentrations estimated only once at W10, we
estimated the Spearman correlation coefficient between
ASVs and the phenotype of interest using cor.test() func-
tion, within each group. P-values were corrected within
each outcome using FDR.

Granger-causality network
Granger-causal networks were built in Matlab 2013b
with the Lasso-granger package [38]. Averaged genus
trajectories within groups were used as predictors.
We predicted based on a lag of 1, and genera were
selected with a lambda of 1. Genera included had a
summed relative abundance > 10− 3. Networks were
plotted with igraph [60].

Additional files

Additional file 1: Figure S1. Volcano plots separated by weeks
showing gut microbial taxa that are differentially abundant in pairwise
comparisons of wild-type mice fed ad libitum (WT), ob/ob mice fed ad
libitum (OB) and ob/ob mice pair-fed according to WT intake (OB-PF).
X-axis shows fold changes (in log2 scale) and Y-axis shows unadjusted
p-values as reported by DESeq2 (in negative log10 scale). Each point
represents an ASV, and its color represents whether a given ASV is
significantly differentially abundant in that comparison after adjusting for
multiple correction (as reported by DESeq2). (PDF 5436 kb)

Additional file 2: Figure S2. Heatmaps showing associations between
ASVs and host metabolic phenotypes within the three groups: wild-type
mice fed ad libitum (WT), ob/ob mice fed ad libitum (OB) and ob/ob
mice pair-fed according to WT intake (OB-PF). Associations that are not
statistically significant are shown with white cells. (A) Effect size from
linear mixed models between ASVs and three phenotypes: body weight,
lean body mass and fat mass. (B) Spearman correlation co-efficient
between ASVs and two phenotypes: area-under-the-curve for glucose
response curves and insulin levels 2 h after glucose administration.
(PDF 256 kb)

Additional file 3: Figure S3. Daily food intake of wild-type mice fed ad
libitum (WT), ob/ob mice fed ad libitum (OB) and ob/ob mice pair-fed
according to WT intake (OB-PF). Intake was precisely measured with TSE
system (PhenoMaster, Bad Homburg, Germany) in week 3 (A) and week 9
(B). ***P < 0.001, for WT-vs-OB and OB-PF-vs-OB comparisons. (PDF 47 kb)

Additional file 4: Table S1. Detailed information on when fresh fecal
samples and cecum content were collected. Table S2. Associations
between individual metabolic phenotypes and microbial alpha diversity
measures using linear mixed models. Table S3. Testing for differences in
the Shannon diversity index, observed ASVs, and Firmicutes to
Bacteroidetes ratio between the groups during each week. FDR-adjusted
p-values from Wilcoxon rank-sum test are reported. Table S4. Testing for
differences in PC1 between groups during each week. FDR-adjusted p-
values from Wilcoxon rank-sum test are reported. Table S5a-c. ASVs that
are differentially abundant in pairwise comparisons of groups,
consistently during W6-W9. Both p-values and Holm's sequential
rejection-based adjusted p-values are reported. ASVs re-annotated with
iMGMC are marked in the last column "Altered taxonomy". Table S6a-f.
KEGG pathways (a-c) and orthologous groups (d-f) that are differentially
abundant in pairwise comparisons of groups, consistently during W6-W9.
Both p-values and Holm's sequential rejection-based adjusted p-values
are reported. Table S7a-b. Spearman rank correlations between
microbial taxa and one-time metabolic measurements, estimated
separately for the groups. Taxa with at least one correlation with FDR-
adjusted P < 0.05 or absolute value of Spearman's rho over 0.4 are
reported. Table S7c-e. Correlations between microbial taxa and body
weight (c), lean body mass (d) and fat mass (e) measured multiple times.
Linear mixed models were estimated separately for the groups. Taxa with
at least one correlation with FDR-adjusted P < 0.05 are reported. Table
S8a-c. ASVs that are differentially abundant in pairwise comparisons of
groups during each week, tested using DESeq2. Both unadjusted and
adjusted p-values from DESeq2 are reported. Table S9. Tukey's multiple
comparison test results for pairwise comparisons of blood glucose levels
during an oral glucose tolerance test in the three groups. (XLSX 174 kb)
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