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Abstract

Background: Ruminant gastrointestinal tract homeostasis deploys interactive microbiome–host metabolic
communication and signaling axes to underpin the fitness of the host. After this stable niche is destroyed by
environmental triggers, remodeling of homeostasis can occur as a spontaneous physiological compensatory actor.

Results: In this study, 20 sheep were randomly divided into four groups: a hay-fed control (CON) group and a
high-grain (HG) diet group for 7, 14, or 28 days. Then, we examined 16S rRNA gene sequences and transcriptome
sequences to outline the microbiome–host co-oscillation patterns in remodeling of colonic homeostasis in a sheep
model during adaptation to a HG diet. Our data revealed that with durations of an HG diet, the higher starch levels
directly affected the colonic lumen environment (lower pH and higher fermentation parameters), which in turn
filtered lumen-specific functional taxonomic groups (HG-sensitive and HG-tolerant taxa). The colonic epithelium
then gave rise to a new niche that triggered endoplasmic reticulum stress to activate unfolded protein response, if
the duration of endoplasmic reticulum stress was overlong, this process would regulate cell apoptosis (Caspase-3,
Caspase-8, and TNFRSF21) to achieve a functional transformation.

Conclusions: Our results provide a holistic view of the colonic microbial assemblages and epithelium functional
profile co-oscillation patterns in remodeling of colonic homeostasis during adaptation to an HG diet in a sheep
model. These findings also provide a proof of concept that the microbe–host collaboration is vital for maintaining
hindgut homeostasis to adapt to dietary dichotomies.
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Background
Ruminant gastrointestinal tracts are inhabited by vast
and diverse symbiotic microorganisms that function in
an enduring mutualistic partnership that contributes to
the fitness of the host [1–3]. Through their collective
interaction system, microbiome oscillations affect host
physiology and genomes, which results in the creation of
integrated microbial sensing and metabolic functions
within the host to ensure its survival in a microbially
dominated world [4]. The microbiome–host homeostasis
is vital to maintaining the physiological functions of the
animal’s digestive tract, which orchestrates optimized
absorption, animal health, and beneficial outcomes [3].
However, this homeostasis is easily shaped throughout
life, including by diet, age, and antibiotic use [5–8].
After the gastrointestinal tract niche is destroyed, remod-

eling of homeostasis occurs as a spontaneous physiological
compensatory process [9]. That said, the microbiome and
host assemble anew to adapt a changed niche at any given
time according to available metabolites and physical envir-
onment conditions [10, 11]. Evidence also suggests that the
host gut and its microbiota undergo co-oscillations to ad-
just to dietary perturbations and that these co-oscillations
are vital for achieving and maintaining homeostasis [4, 12].
Thus, understanding co-oscillation patterns between the
microbiome and host during remodeling of homeostasis is
of importance in gastrointestinal ecology.
Over the past few years, high-grain (HG) diets have been

fed to ruminants to improve the animals’ productive per-
formance and increase the economic profits of animal
production [13–15]. However, an abrupt shift from a low
concentration to high concentration of grains may have
adverse effects on the commensal microbiota and epithe-
lial health of the ruminants’ gastrointestinal tracts. This
increases volatile fatty acid (VFA) and lactate production
and may lead to a reduction in ruminal pH, increasing the
risk of less efficient fiber digestibility, reduced barrier
function, and the translocation of endotoxins into the sys-
temic circulation [16–20]. Numerous studies have demon-
strated that an increase in the proportion of grain in the
diet causes an increase in the amount of rumen starch
passing through the small intestine and flowing into the
hindgut, thereby increasing hindgut fermentation and
readily affecting hindgut homeostasis [21–23]. Given this
condition, a better understanding of how the hindgut
microbiome and host homeostasis are remodeled during
adaptation to an HG diet is important for animal health
and efficient nutrient use [24]. Most researchers have
assessed the transient adaptation of the forestomach and
the small intestine of ruminants when exposed to an HG
diet [24]. Hence, this study seeks to establish in-depth the
hindgut microbiome–host co-oscillation patterns in re-
modeling of homeostasis due to an HG diet to underpin
the whole gastrointestinal tract research.

To circumvent these challenges, we used sheep with
good characteristics (high adaptability and quick growth)
as the animal model to analyze 16S rRNA gene sequences
of the colonic microbiome and transcriptome sequences
of the colonic epithelium in four groups of sheep exposed
to an HG diet for various time periods up to 28 days. Our
combined time-resolved analyses may help to expand the
understanding of how the microbiome and host co-vary
from destroyed homeostasis to remodeling of homeostasis.
The increased knowledge of the mechanisms involved in
these interactions will reveal opportune interventions for
the prevention of metabolic disease.

Results
Colonic microbial metabolites
The results of colonic fermentation stoichiometry were
showed in Additional file 1: Table S1, which was published
previously [25]. Briefly, the colonic pH decreased linearly
(p= 0.007) with the increasing duration of the HG diet, while
the concentrations of acetate, propionate, butyrate, lactate,
and total VFA increased linearly (p < 0.05 for all). The valer-
ate level was lower in the HG7 group than in the CON
group, but it gradually increased to the CON group level
after 14 days of the HG diet (quadratic, p < 0.001). Increases
in the duration of the HG diet also caused cubic increases in
the starch content (p= 0.030) and isobutyrate concentration
(p < 0.001). These metabolites were higher in the HG7 group,
lower in the HG14 group, and higher in the HG28 group
(cubic, p < 0.05), whereas duration of the HG diet had no ef-
fect on the concentration of isovalerate (p > 0.05).
An increasing duration of HG feeding had no effect on

the proportion of acetate. The percentages of propionate
(p = 0.007) and valerate (p < 0.001) were lower in the
HG7 group than in the CON group, but they gradually
increased with adaptation to the HG diet. A linear de-
crease was detected in the molar proportions of isobuty-
rate (p < 0.001) and isovalerate (p < 0.001) with duration
of the HG diet, while the proportion of butyrate (p <
0.001) increased linearly.

The diversity and richness of colonic bacterial
communities
Across all 20 samples, a total of 683,600 high-quality
reads and an average of 34,180 ± 4085 reads per sample
were obtained with 16S rRNA gene sequencing. As
shown in Additional file 2: Fig. S1, the rarefaction curves
approached a plateau at 26,706 reads. The results of
principal co-ordinate analysis (PCoA) based on an un-
weighted UniFrac distance revealed that the colonic mi-
crobial structures were distinctly separate from each
other (Fig. 1A). An unweighted distance-based analysis
of molecular variance (AMOVA) based on the un-
weighted distance metric (Additional file 3: Table S2)
verified statistically significant dissimilarities among the
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four groups with respect to bacterial diversity (F = 6.384;
p < 0.001). Based on unweighted UniFrac dissimilarity
matrix among the four groups at the OTU level, we used
a dissimilarity metric to measure the resilience of bacter-
ial communities (Fig. 1B). Of note, the community diver-
sity of the HG14 group had the closest metric among
the HG groups (p < 0.01), but there was still a significant
difference between the HG14 and HG28 groups. We fur-
ther compared the α-diversity across the 20 samples. As
shown in Fig. 1C and D, bacterial richness (operational
taxonomic unit [OTU] numbers; p = 0.002) and evenness
(Shannon index; p = 0.006) followed a similar pattern of
change, surprisingly presenting a reverse trend com-
pared with intragroup metrics among the four groups.
Specifically, all sheep fed an HG diet had lower index
values than the control hay-fed sheep, and reached a
peak at 14 days of HG feeding only for bacterial richness.
All indices are shown in Additional file 4: Table S3.

Taxonomic configurations of colonic bacteria during
adaptation to the HG diet
As a percent of reads assigned, discriminatory features
were evident in the bacterial relative abundance at both

the phylum and genus levels. The threshold was identi-
cal, as each taxonomic configuration was more than 1%
of the mean relative abundance for at least one group.
We also distinguished between HG-sensitive and HG-
tolerant indicators, which decreased and increased, re-
spectively, in response to an HG diet. At the phylum
level (Additional file 5: Table S4), Firmicutes, Bacteroi-
detes, and Proteobacteria were the most abundant,
representing more than 93% of the bacterial community
(93.46% in the CON group, 98.55% in the HG7 group,
98.06% in the HG14 group, and 96.99% in the HG28
group). With increasing durations of HG feeding, signifi-
cant shifts were noted in four phyla: Firmicutes, Bacter-
oidetes, Verrucomicrobia, and Cyanobacteria (p < 0.05;
Fig. 2A). Of these, Firmicutes was sensitive to the initial
dietary perturbation from hay to the HG diet, and it
then increased with the duration of the HG diet. How-
ever, Bacteroidetes was an indicator of HG tolerance.
Additional bacterial HG-sensitive indicators were found
in the Verrucomicrobia and Cyanobacteria.
At the genus level, a heat map based on the z-score of

the relative abundance (≥ 1% in at least one group) of 26
predominant taxa was prepared to determine the

Fig. 1 (A) PCoA analysis of bacterial communities in the colonic digesta samples among 20 sheep assigned to CON (n = 5), HG7 (n = 5), HG14
(n = 5), and HG28 (n = 5) groups, which received an HG diet for 0, 7, 14, and 28 days, respectively. (B) Comparisons of the distances based on the
unweighted UniFrac dissimilarity matrix among the four groups at the OTU level. *p < 0.05, **p < 0.01. (C) The colonic bacterial richness (number
of observed species) and (D) evenness (Shannon diversity index values) at the 3% dissimilarity level

Lin et al. Animal Microbiome            (2020) 2:22 Page 3 of 12



distribution of taxonomic composition in colonic digesta
among the four groups (Fig. 2B). Of the 19 predominant
taxa that significantly shifted during this study (p < 0.05;
Additional file 6: Table S5), the relative abundance of
Blautia, Coprococcus, Ruminococcus, Oscillibacter, Clos-
tridium_sensu_stricto_1, unclassified Erysipelotrichaceae,
Anaerostipes, Prevotella, and Bifidobacterium were toler-
ant to HG feeding, and their proportions remained stable
in all three HG groups. Similarly, the proportions of un-
classified Ruminococcaceae, unclassified Christensenella-
ceae, unclassified vadinBB60, RC9_gut_group, unclassified
BS11_gut_group, Akkermansia, and unclassified Gastra-
naerophilales were lower in the HG groups compared to

the CON group, and no differences in the proportions of
these taxa were found between the HG groups. Over the
entire experimental period, the relative abundance of
some taxa changed dynamically and continuously. For ex-
ample, the abundance of Faecalibacterium was stable in
the CON, HG7, and HG14 groups, but showed a signifi-
cant increase in the HG28 group. Phocaeicola decreased
from the CON group to the HG7 group but increased in
the HG14 group, followed by a decrease in the HG28
group. No significant difference was detected in the rela-
tive abundance of Halomonas in the CON, HG14, and
HG28 groups, while the percentage of Halomonas was
higher in the HG7 group than in the HG28 group.

Fig. 2 Dominant phyla or taxa of bacteria that had a relative abundance of more than 1% for at least one group were compared among the four
groups. (A) Phylum-level differences in relative abundance among four groups. (B) Distribution of the predominant taxa in colonic digesta. The
color key of the heat map depicts the z-score of the relative abundance of the dominant taxa. *p < 0.05, **p < 0.01
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Gene co-expression networks from dietary perturbation
to duration of HG diet
We generated 152.90 Gb of clean data for the host gene
transcription, with an average of 7.65 Gb (± 0.20 SEM)
of clean data per subject. In total, the expression profiles
of 13,206 genes with fragments per kilobase of transcript
per million fragments mapped (FPKM) > 0.2 were deter-
mined in all colonic tissue samples. To obtain significant
bioinformatics in the multidimensional transcriptome
profiles, we performed weighted gene co-expression net-
work analysis (WGCNA) to identify modules of co-
expressed genes. We divided the common host genes
into 25 modules (named M1–M25) (Fig. 3a).

Functional profiles of microbiome-associated host
transcriptome modules
To mechanistically probe the interaction between the
microbiome and host, we used observed indexes (dietary

factors, durations, fermentation parameters, and bacter-
ial traits) to associate colon epithelium expressed mod-
ules. Among the 25 modules, the expression of host
genes in the M10 module (442 genes; 3.35% of total
reads) had the strongest correlation with microbial traits
(Fig. 3b). Notably, these genes in the M10 module dis-
played positive associations with the high-concentration
diet and negative associations with low-concentration
diet. The concentration of several VFAs was also closely
related to M10. Not surprisingly, the M10 module was
also positively correlated with HG-tolerant taxa indica-
tors but negatively associated with HG-sensitive taxa
and diversity indices. These results imply the shift of diet
wound trigger epithelial genes expression. Macroscopic-
ally, we also identified that the M10 module was a hall-
mark of the oscillation pattern, which was coordinated
with a shift in the bacterial community (Fig. 3c). To
identify M10-related functions, we conduct Gene

Fig. 3 Global co-expression networks and gene modules. a Dendrogram from gene co-expression network analysis of samples among the CON,
HG7, HG14, and HG28 groups. Modules of co-expressed genes were assigned a color and number (M1 to M25). b Relationship between dietary
factors, durations, fermentation parameters, bacterial traits, and the 25 gene modules. Only Spearman’s significance levels (p < 0.05, r≥ 0.5) are
shown. c Heat map of genes in M10 showing the dynamic expression pattern after hierarchical clustering among the four groups. The color key
of the heat map depicts the z-score of the expression of genes in M10
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Ontology (GO) enrichment analysis of the biological
processes. Only GO terms with p < 0.05 were regarded
as significantly regulated (Fig. 4a; Additional file 7: Table

S6). Among 50 significantly altered GO terms, we sum-
marized main functions, including carbohydrate meta-
bolic process (6.33%), cell death (9.67%), response to

Fig. 4 a The significant GO terms (p < 0.05) in biological processes of the M10. b The network of hub genes in the M10. The six genes in red
were enriched in a cell apoptotic process. c The z-sore of six gene expressions, including LGMN, NCK2, INFRSF21, CIDEC, PDK1, and ANGPT4, are
shown among the four groups based on transcriptome analysis. *p < 0.05. d The relative mRNA abundance of genes related to cell apoptosis by
qRT-PCR in the colon of hay-fed (CON) and HG-diet-fed sheep (HG7–28). Values are means (n = 5), with their standard errors represented by
vertical bars
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endoplasmic reticulum stress (ERS) (2.33%), carbohy-
drate derivative metabolic process (7.33%), protein
modification process (mainly unfolded protein response
[UPR]; 14.67%), and cell proliferation (9.33%).

Expression trajectories of M10 hub genes
Using the MCODE application in Cytoscape (version 3.5.1),
we found that M10 was mainly conducted by 36 hub genes
(Fig. 4b; Additional file 8: Table S7)—including LGMN,
NCK2, TNFRSF21, CIDEC, PDK1, and ANGPT4—which
have been mainly implicated in the cell apoptotic process
in the colonic epithelium. Among them, the expression tra-
jectories of TNFRSF21 showed significant oscillations due
to dietary perturbations and duration of HG diet (p = 0.042;
Fig. 4c). These results imply that the microbiome may ma-
nipulate the host transcriptome by regulating cell apoptosis.
To further investigate, we also quantified the relative
mRNA abundance of genes related to cell apoptosis func-
tion (Caspase-3, Caspase-8, Bcl-2, Bax, and Bad) by qRT-
PCR in the colons of hay-fed (CON) and HG-fed sheep
(HG7, HG14, and HG28). Intriguingly, drastic expression
shifts were found in caspase-3 (p = 0.025) and caspase-8
(p = 0.046); of note, the oscillatory trend of caspase-3 and
caspase-8 longitudinally coincided with M10 hub genes
enriched in cell apoptosis (Fig. 4d). Additionally, the expres-
sions of these three shifts in pro-apoptosis genes was the
highest in the HG7 group, and then had attenuated trend
with the duration of HG feeding.

Discussion
The objective of this study was to understand the co-
diversified patterns between taxonomic configurations
and colonic transcriptome files in remodeling of colonic
homeostasis during adaptation to an HG diet in a sheep
model. We designed our experiment to follow the main
events from a high-forage to a high-starch diet and then
longitudinal HG feeding for 4 weeks. Not surprisingly,
after abruptly switching to an HG diet, the colonic niche
underwent comprehensive modification that included in-
creased dietary starch content, enhanced total VFA pro-
duction, promoted lactate, and decreased pH. These
results were also mirrored by our previous study in
rumen, which described a hallmark of the significant in-
creased concentrations of ruminal butyrate, valerate, lac-
tate and total VFA in the HG groups compared to their
levels in the CON group [26]. Additionally, the high-
starch diet drove clearly distinguishable changes in colon
microbial ecosystems, and the duration of the HG-diet
regulated the divergence and convergence of diet-
microbe fingerprints in this study. These observations
were followed the previously described natural oscilla-
tions in rumen [27, 28]. That said, ruminal microbial
community structure and composition would be chan-
ged and adapted from a high-forage diet to this to a

high-grain diet HG. To explore whether the changes in
the rumen and colon lumen environment are conver-
gent, we further studied the changes in the colonic mi-
crobial ecology with high comprehensive. Considering
that the colonic microbial structures were distinctly sepa-
rated from each other using an unweighted UniFrac distance,
we also analyzed inter-individual variability matrix among
the four groups at the OTU level. One intriguing
phenomenon of the microbial dissimilarity metric was that
the community diversity of the CON group had the minimal
inter-individual variability while the HG7 group had max-
imum inter-individual variability, which implies that the HG
diet disturbed the microbial niche [1, 27]. After feeding with
an HG diet, the HG14 group showed the greatest similarity,
but there still had significantly similarities between HG14
and HG28 groups. That said, the microbial structure always
assembled anew to adapt to the distinct colonic niches
throughout the duration of HG feeding. We further com-
pared α-diversity among the four groups and found that bac-
terial richness and evenness followed a similar pattern of
change, with the sudden switch to an HG diet resulting in
lower index values than the hay-fed sheep. The more striking
observation from our study was the reverse trend compared
with intragroup metrics among the four groups, which is in
agreement with previous ruminal observations [28, 29]. This
implies that dissimilarity based on an unweighted UniFrac
distance and bacterial richness and evenness of α-diversity
may be indicators of microbial homeostasis disturbed by
dietary perturbation.
After observing that an HG diet drove a colonic niche

shift, we could see extreme changes in distant phylogen-
etic lineages moving up the taxonomic levels of phyla and
genera, which distinguished between HG-sensitive and
HG-tolerant indicators. Phylogenetic analysis of detectable
microbial genera revealed a change in relative abundance
in four phyla, namely Firmicutes, Bacteroidetes, Verruco-
microbia, and Cyanobacteria. Notably, opposite trends
were observed between Firmicutes and Bacteroidetes.
Their relative abundances shifted significantly when faced
with dietary perturbation. For Firmicutes, which was sig-
nificantly decreased when abruptly feeding HG diet, while
constantly increased with the increased duration of the
HG diet. Firmicutes has been reported to perform a
starch-degradation function [16], which hints the in-
creased Firmicutes adapted to continuous HG diet. Con-
trarily, the levels of Bacteroidetes increased primordially,
then decreased with the duration of the HG diet being
sensitive to high levels of starch. This observation had a
corresponding increase in high starch content. These re-
sults illustrate that the microbiome was able to remodel
its homeostasis ability to adapt to new habitats within a
certain period of time, selecting and shaping specific func-
tional groups according to physical environmental land-
scapes during continuous HG feeding.

Lin et al. Animal Microbiome            (2020) 2:22 Page 7 of 12



We also observed that the changes in taxa showed re-
modeling oscillations at the genus level. Noteworthy fea-
tures were three oscillatory patterns throughout the
various duration times of the HG diet. Among them, nine
taxa were HG-tolerant indicators, as demonstrated by their
increased tendency after HG feeding, and their proportions
remained stable for the duration of the HG diet. Prevotella
participates in the digestion and utilization of starch, xylan,
and pectin in ruminants, and so its higher abundance in
the HG groups might be due to the higher level of starch,
which favors the growth of this diverse functional contribu-
tor in the colonic bacterial community [30, 31]. Similarly,
Oscillibacter has a positive relationship with the starch con-
tent in cattle feces, so the higher percentage of this genus
observed in the HG groups may reflect the high levels of
fermentable substrate in the sheep’s colon [32]. Addition-
ally, Bifidobacterium is considered a starch-hydrolyzing
bacteria [33]. The increases in Coprococcus, which results
in increased production of butyrate, may have given rise to
a higher-starch niche to provide energy to the host [34, 35].
The higher relative abundance of Blautia could increase
fermentation to produce more lactate and acetate, as de-
scribed previously [36]. These increases may be accompan-
ied by an increase in the abundance of specific functional
groups associated with starch breakdown and fermentation,
which lead to the colonic pH drop caused by the produc-
tion of multiple metabolites (organic and short-chain fatty
acids) [19]. This phenomenon hints that the colonic bacter-
ial community has different properties but performs con-
sistent functions in response to an HG diet.
An opposite trend was seen with the unclassified Rumino-

coccaceae, unclassified Christensenellaceae, unclassified
vadinBB60, RC9_gut_group, unclassified BS11_gut_group,
Akkermansia, and unclassified Gastranaerophilales. These
taxa characterized the colonic microbiome of the CON
group, and the duration of the HG diet had no effect on the
proportion of these taxa. For example, the decreases in
hydrogen-producing fiber-degrading unclassified Christense-
nellaceae [37], hemicellulose-degradation unclassified BS11_
gut_group [38], and forage-enrichment Akkermansia [32]
after HG feeding implies that the microbiome has an
abridged response to dietary perturbations when switching
from high-forage to high-starch diets. Another trait of the
oscillating remodeling pattern is that the relative abundance
of some taxa changed dynamically and continuously with
the duration of the HG diet. We found the abundance of
Faecalibacterium remained stable in the CON group, the
HG7 group, and the HG14 group, but a significant increase
was observed in the HG28 group. Interestingly, Faecalibac-
terium may use substrates to ferment more butyrate [23].
This genus was accompanied by a corresponding increase in
the percentage of Coprococcus to produce more butyrate,
which may explain the highest butyrate concentration in the
HG28 group. Taken together, the changes in the functional

taxonomic groups were affected by the high-starch niche
throughout the HG feeding period. This suggests that the
functional taxonomic groups, regardless of whether they are
HG-sensitive or HG-tolerant, and microbial metabolites to-
gether played a vital role in stabilizing the microbial ecosys-
tem throughout the HG feeding period.
Evidence now supports cross-talk between the microbiota

genomes and the host genome, and the most important
regulatory factor in this process is diet [6]. In this study, we
used the transcriptome profile to perform WGCNA to
identify modules of co-expressed genes associated with the
enteric environment (dietary factors, fermentation parame-
ters, and microbial-specific assemblages). Not surprisingly,
we found that the M10 module had co-diversified with vari-
ous traits. Notably, the M10 module, a hallmark of the os-
cillation pattern, was positively correlated with HG-tolerant
taxa indicators and negatively associated with HG-sensitive
taxa and diversity indices. These relationships and oscilla-
tion patterns suggest that dietary dichotomy and the tem-
poral variation in feeding of an HG diet caused a
convergence between microbial traits and available host
transcriptome files, which together restored homeostasis to
new habitats (HG diet) [39].
To further elucidate the functional mechanisms be-

hind colonic microbiome–host co-oscillation patterns
during adaptation to an HG diet, we summarized the
main functions of M10, including the carbohydrate
metabolic process, cell death, response to ERS, carbohy-
drate derivative metabolic process, protein modification
process (mainly UPR), and cell proliferation. According
to previous observations, we found that the endoplasmic
reticulum is an organelle with multiple functions that
participates in transmembrane protein synthesis and se-
cretion [40]. When facing metabolic disturbance stem-
ming from over nutrition, it aggravates intracellular
stress (ERS) [41]. ERS triggers the UPR to restore
homeostasis (protein modification process); if the adap-
tive response fails, cell apoptosis ensues [40, 42]. Inter-
estingly, these series of previous events were highly
mirrored by our findings; the sheep who underwent a
dietary change from a high-forage diet to HG diet dem-
onstrated intracellular niche shifts that then gave rise to
cell apoptosis. Therefore, we posit a tantalizing hypoth-
esis that during adaptation to an HG diet, the diet
microbiome drove host transcriptome files shifts, poten-
tially through regulating cell apoptosis.
We further analyzed the highest degree of connectivity

genes belonging to M10 and found that 36 hub genes of
M10 were mainly implicated in cell apoptotic process
function in the colonic epithelium. Among them, the ex-
pression trajectories of TNFRSF21 from dietary pertur-
bations to duration of HG diet had significant
oscillation. Previous evidence shows that TNFRSF21, be-
longing to ERS and proinflammation, induces cell
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apoptosis when facing environmental stress [43, 44]. To
our understanding, these findings highlight cell apop-
tosis as the main driver for its host transcriptome os-
cillations. To further investigate this, we also
quantified the relative mRNA abundance of other
genes related to cell apoptosis among the four groups.
Intriguingly, drastic expression shifts were found in
Caspase-3 and Caspase-8, in which the oscillatory
trends longitudinally coincided with M10 hub genes
enriched in cell apoptosis. Under ERS-inducing stimu-
lation, the caspase family of cysteine proteases in-
volved in apoptosis and inflammatory cytokine, such
as caspase-3 and caspase-8, was activated [40, 41].
These results show that cell apoptosis was the highest
after the sudden shift from a high-forage to HG diet,
and the pro-apoptosis process was attenuated
throughout the duration of feeding with the HG diet.
That said, microbiome-driven host cell apoptosis was
the main functional driver for regulating colonic epi-
thelium transcriptome remodeling oscillations to
adapt to the HG environment.

Conclusions
Generally, the increased level of starch directly affected
the colonic lumen environment as the duration of the
HG diet increased, which in turn filtered the lumen-
specific functional taxonomic groups (Fig. 5). The
colonic epithelium then gave rise to a new niche that
triggered cell apoptosis to achieve a functional trans-
formation. These finding revealed that microbe–host
collaboration is vital for remodeling of hindgut homeo-
stasis to allow adaptation to dietary perturbations.

Methods
Animals
This study was approved by the Nanjing Agricultural
University in compliance with the Regulations for the
Administration of Affairs Concerning Experimental Ani-
mals. The detailed design of the animal experiments was
the same as in our previous study [25]. Briefly, we se-
lected 20 male Hu sheep (180 days old with a body
weight of 25.60 ± 0.41 kg) and randomly divided them
into four groups (CON, HG7, HG14, and HG28), with

Fig. 5 A holistic view of microbiome–host co-oscillation patterns in remodeling of colonic homeostasis during adaptation to an HG diet in a
sheep model
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five animals in each group. Before the study began, all
sheep were fed a hay-based diet (Additional file 9: Table
S8) for 4 weeks to build a similar colon environment.
After the transition period, the sheep from the CON
group continued to be fed hay for 28 days, while the
three HG groups received a total mixed ration having a
60:40 concentrate-roughage ratio (Additional file 9:
Table S8; concentrate containing corn grain, wheat
grain, soybean meal, mineral and vitamin premixes, and
roughage including alfalfa hay and oat hay) for 7, 14 and
28 days. All animals were fed 3.50% of their body weight
per day and placed in individual pens (1.2 × 1.4 m) with
free access to water. The animals were fed twice a day at
0830 and 1630 h, and there was approximately 10% feed
refusal. The body weight of the sheep was measured on
the first day of every week before feeding.

Sample collection and measurements
Animals from each treatment group were slaughtered
and sampled on the day of their feeding treatment com-
pletion. Digesta samples in the colon were collected im-
mediately after dissection, and 7ml of homogenized
colonic content samples were collected and preserved in
liquid nitrogen for DNA extraction. Colon tissue was
washed with ice-cold phosphate-buffer saline and cut
into 0.4 × 0.4-cm strips using a scalpel, then preserved in
liquid nitrogen for RNA extraction.

Extraction of bacterial DNA from colonic digesta
We extracted microbial DNA from 0.25 g of each colonic
digesta sample using a DNA extraction kit (QIAamp Fast
DNA Stool Mini Kit, Germany). The concentration and
quality of the DNA was determined with a Nanodrop 1000
spectrophotometer (Thermo Fisher Scientific, USA), and
the DNA was preserved at − 80 °C for subsequent analyses.

PCR amplification and 16S rRNA gene sequencing
The bacterial 16S rRNA gene was amplified from iso-
lated colon digesta DNA using the typical 338F-806R
primers (V3–V4 region). The qualified DNA was broken
into libraries and sequenced using the Illumina PE250
MiSeq platform. The paired reads generated from the
platform were then checked using the previously de-
scribed criteria for quality control [45]. High quality se-
quences with a threshold sequence similarity level great
than 97% were clustered into OTUs using UPARSE soft-
ware (version 7.1; http://drive5.com/uparse/) [46]. We
selected the sequences with the maximum abundance in
each OTU as representative sequences using QIIME
(version 1.9.0) software [47]. The representative se-
quences of each OTU were compared to the SILVA
database (version 119) [48]. Rarefaction curves, alpha di-
versity, beta diversity and Good’s coverage were calcu-
lated in QIIME using the default parameters. AMOVA

of the unweighted UniFrac distance was performed using
MOTHUR software [49].

Epithelial RNA extraction
We ground the colon tissues into powder and extracted
total RNA using TRIzol (Takara Bio, Otsu, Japan) accord-
ing to a previously described method [50]. The concentra-
tion and quality of total RNA were determined with a
Nanodrop 1000 spectrophotometer. The absorbed optical
density ratio (OD260/280) for RNA was selected to main-
tain a high RNA purity (1.85–2.05), and the RNA integrity
was verified by 1.4% agarose-formaldehyde gel electro-
phoresis. The concentration of each RNA sample was nor-
malized to 500 ng/μL for each sample based on optical
density, and each sample was preserved at − 80 °C for sub-
sequent analyses. Then, 1 μg of RNA was used for sequen-
cing, sequencing libraries were generated using a
NEBNext Ultra RNA Library Preparation Kit (E7530L,
NEB, USA) following the manufacturer’s recommenda-
tions for Illumina Hiseq 2000 platform, and index codes
were added to attribute sequences to each sample. An-
other 1 μg of RNA was reverse-transcribed using a Prime-
Script® RT reagent Kit with a gDNA Eraser (Takara Bio,
Shiga, Japan). The primer sets used in our research were
listed in Additional file 10: Table S9.

Transcriptome sequencing and analysis
After obtaining the paired-end reads, we used the in-
ternal script to remove low-quality reads. HISAT2
(www.ccb.jhu.edu/people/infphilo) was used to align the
remaining reads to the host [51]. The software StringTie
(version 1.3.4d) was used to map reads in order to calcu-
late the expression of transcripts using FPKM methods
[52]. Only expressed genes (FPKM > 0.2 in all samples)
were used in subsequent analyses. The GO enrichment
of genes was analyzed using DAVID (version 6.8) [53].

Statistical analyses
Data for the microbial traits obtained from 16S rRNA
gene sequencing and differentially expressed genes (DEGs)
based on transcriptome analysis were analyzed using the
Kruskal–Wallis test to identify significant shifts based on
threshold values (p < 0.05). Additionally, apoptosis-related
genes were quantified by qRT-PCR, which was used to
perform differential calculation with one-way ANOVA.
The distribution of the predominant genera, the relation-
ship between colonic expressed modules and microbial
traits, and expression trajectories of M10 hub genes in co-
lonic digesta among the four groups were visualized by
using the “pheatmap” package in the R software (version
3.5.0). The WGCNA tool in the R package was used to
construct a gene co-expression network and associate
modules, dietary factors, durations, fermentation parame-
ters, and bacterial traits [54]. The gene network was
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exported to Cytoscape for visualization [55]. Modular
structure and groups of highly interconnected nodes were
analyzed using the MCODE application in Cytoscape with
standard parameters (node score cutoff: 0.2; K-Core: 2;
maximum depth from seed: 100) [56].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42523-020-00041-9.

Additional file 1 Table S1. Serial changes in the colonic fermentation
stoichiometry (Mean values with their standard errors; n = 5). CON, 0 day
fed an HG diet; HG7, 7 days fed an HG diet; HG14, 14 days fed an HG
diet; HG28, 28 days fed an HG diet.

Additional file 2 Figure S1. The rarefaction curves of the colonic
digesta of hay-fed (CON) and concentrate-fed sheep (HG7–28).

Additional file 3 Table S2. Analysis of molecular variance (AMOVA) of
bacterial communities in colonic digesta of hay-fed (CON) and
concentrate-fed sheep (HG7–28).

Additional file 4 Table S3. Serial changes in the richness and diversity
of colonic bacterial community.

Additional file 5 Table S4. Serial changes in the abundance of
predominant phyla (% of total sequences) in colonic digesta. (Mean
values with their standard errors; n = 5).

Additional file 6 Table S5. Serial changes in the abundance of
predominant genera (% of total sequences) in colonic digesta. (Mean
values with their standard errors; n = 5).

Additional file 7 Table S6. GO enrichment analysis of the M10 genes
in biological processes. Only terms with p < 0.05 were listed.

Additional file 8 Table S7. The expression of hub genes was enriched
in the M10 module.

Additional file 9 Table S8. Ingredient and chemical composition of the
diet (dry matter basis).

Additional file 10 Table S9. The primer sequences of genes related to
cell apoptosis in the colonic epithelium for qRT-PCR.
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