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The yellow perch (Perca flavescens)
microbiome revealed resistance to
colonisation mostly associated with
neutralism driven by rare taxa under
cadmium disturbance
Bachar Cheaib1,2,3* , Hamza Seghouani1, Martin Llewellyn2, Katherine Vandal-Lenghan1, Pierre-Luc Mercier1 and
Nicolas Derome1

Abstract

Background: Disentangling the dynamics of microbial interactions within communities improves our
comprehension of metacommunity assembly of microbiota during host development and under perturbations. To
assess the impact of stochastic variation of neutral processes on microbiota structure and composition under
disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were
experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium
chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using
16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities
were characterized along with development and across experimental conditions.

Results: After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both
skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in
addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation
resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut
microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly
composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as
Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares
models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity
distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all
treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water
microbiomes, however, NST models suggested higher ecological stochasticity under perturbations.
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Conclusions: Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved
predominantly under neutral processes with potential involvement of deterministic forces sourced from host
filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic
interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our
understanding of community assembly host-associated and free-living under anthropogenic selective pressure.

Background
Microorganisms drive the biogeochemical cycles of the
earth and contribute towards homeostasis, immunity,
physiology, behaviour [1, 2] and development [2, 3]
across a wide range of metazoan hosts [4]. Host-
microbiota symbioses involve complex and dynamic as-
sociations between obligate and facultative symbionts
[5]. Disentangling the dynamics of microbial interactions
within communities improves our comprehension of
metacommunity assembly [6]. Ecological processes (i.e.,
dispersal, selection and ecological drift) shape these in-
teractions and govern the assembly rules of the eco-
logical communities [7, 8]. The impact of ecological
processes on community assembly is a long-term debate
in macroecology. Stochastic processes related to the
neutral theory of biodiversity suggests no impact of eco-
logical interactions on species distribution and abun-
dances. Neutrality reflects that diversity units “Species”
are ecologically equivalent, while stochasticity implies
random variation in mean demographic rates [9]. In
such cases, local communities are randomly connected
to a single metacommunity through differing rates of
migration, death and birth [10–12]. In contrast, deter-
ministic related niche theory considers that environmen-
tal conditions and interspecific interactions, including
competitive exclusion, determine distribution and abun-
dance of species [13]. The niche processes imply differ-
entiation in mean demographic rates, while
‘determinism’ reflects an absence of random variation in
species’ demographic rates. In microbial ecology, the ad-
vent of culture-independent approaches such as high-
throughput 16S rDNA metabarcoding paved the way for
the conceptual framework of the Operational Taxo-
nomic Unit (OTU) or Amplicons Sequences Variants
(ASVs) used as units of microbial diversity. Such ad-
vancements have opened new mathematical [14–19] and
network-based [6, 20, 21] models for predicting eco-
logical interactions between microbial communities.
These models helped in constructing hypotheses on
types of processes driving microbiomes assemblies over
evolutionary time.
Models for quantifying the neutral [14, 16, 22, 23] and

deterministic [17, 24–26] processes in different types of
microbial ecosystems continue to provide new compre-
hensive insights regarding the forces governing micro-
biome assembly. Both neutral and non-neutral processes

have been evidenced as drivers of the microbial meta-
community assembly in many vertebrate microbiomes
[27, 28], as well as in the natural environment [29]. For
instance, neutral processes were identified as playing a
major role during the development of host-associated
microbial communities in different domesticated verte-
brate and plant models [28, 30, 31]. When focusing on
case-control surveys, the influence of selective pressure
on microbiota assembly is more salient. In contrasting
contexts such as human oral and gut microbiome under
antibiotic therapy [32] and euryhaline fish microbiome
during salinity acclimation [33], the community assem-
bly was potentially driven by deterministic processes,
with little evidence for stochastic colonisation. Nonethe-
less, there is much work to do to fairly understand the
microbial assembly under disruptive conditions across a
diverse range of host species. In the present study, we
first predict that a selection gradient induced by a con-
centration gradient of a toxic metal will not only disrupt
the host physiology, [34] but will also overwhelm the as-
sembly of symbiont consortia. Second, we predict that
the host will lose its filtering capacity to recruit the ap-
propriate symbionts, which in turn, will translate into in-
creased colonisation of opportunistic strains, as
predicted by the colonisation resistance model [32].
Third, from the interaction networks of OTUs, we ex-
pected that the low abundant taxa might play an import-
ant role in the metacommunity assembly [35–39]. To
this end, we measured the effect of directional selection
along the developmental stages of the host organism
-Yellow Perch juveniles (Perca flavescens) were exposed
to two selection regimes: a constant (9 ppb) and a grad-
ual (0.8 to 9 ppb) exposure to non-lethal doses of cad-
mium chloride (CdCl2), over 90 days. The taxonomic
compositional dynamic of two types of microbial habi-
tats, free-living (water), and host-associated (skin and
gut), were characterised throughout the young develop-
mental stages of the host using a 16S SSU rDNA gene,
based metataxonomics approach [40]. Being able to cope
with polymetallic gradients generated by acid mine
drainages (AMD), the Yellow Perch is a well-established
ecotoxicology vertebrate model: many studies have mea-
sured the impact of heavy metals on their innate im-
mune system [41], metabolism [42], development [43],
parasitism [44–46] and gene expression [47]. As these
host functions are closely related to gut microbiota
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composition, the Yellow Perch is a convenient model to
test the effects of metal exposure on a vertebrate host-
microbiota system. Impact of Cd exposure on microbial
communities was documented for AMD bacterioplank-
ton [48], but not within the host-microbiota system.
Using non-lethal doses of Cd as a selection pressure, we
sought to unravel the neutral and non-neutral processes
shaping the microbiota assembly, without triggering sig-
nificant physiological damage or causing host death.

Materials and methods
Fish rearing
After an acclimation period of 30 days in two containers
of 1500 L each, the Yellow Perch (1200 juveniles) were
reared in 24 tanks (50 fish per tank) of 36 L and accli-
mated for the second period of 15 days. Each tank was
equipped with an independent filtering system circuit.
The fish juveniles were fed daily with the same food
from the beginning to the end of the experiment. A sec-
ond acclimation period of 2 weeks was carried out be-
fore the start of Cd exposure (Supplementary file 1).

Cadmium exposure regimes
Control (Control) and Cd (cadmium) treated tanks were
randomly distributed in the aquarium facility. The ex-
periment was designed for two Cd exposure regimes (8
tanks per regime), and one negative control regime (8
tanks). In treated tanks, fish were exposed to Cd chloride
(CdCl2) provided by Sigma-Aldrich (> 99.9% purity). The
Cd was dissolved in ddH2O to target stock concentra-
tions (9 ppb). For the regime of Cd constant concentra-
tion (CC), the Cd chloride was initially added at 0.8 ppb
(parts per billion), before gradually increasing the con-
centration every 5 days to reach a maximal concentra-
tion at the end of the first month (T1). This maximal
concentration was maintained 2 months until the end of
treatment (third month, T3). For the regime of Cd vari-
able concentration (CV), the Cd concentration was grad-
ually increased every 5 days to reach the target
concentration (9 ppb) at the end of treatment (third
month, T3). The maximal CdCl2 concentration was set
at 9 μg/L as it is the highest CdCl2 concentration toler-
ated by Yellow Perch in contaminated Canadian lakes
[49].

Host-microbiota and water sampling
A total of 432 mucosa host-microbiota samples were
collected for this study, 216 (3 times × 3 regimes × 8
tanks × 3 replicates) skin mucus swabs and 216 (3
times × 3 regimes × 8 tanks × 3 replicates) gut tract sam-
ples (Supplementary file 2). Water samples were stored
in sterile bottles (Nalgene), 2 l per tank were filtered
using a polycarbonate membrane of 0.22 μm. In total,
144 filters (3 times × 3 regimes × 8 tanks × 2 replicates)

were conserved in 2mL sterile microcentrifuge tube and
directly stored at − 80 C.

Metal concentration in water and fish liver
Concentrations of metal traces (Cd, Cu and Zn) within
the water and liver were determined with the ICPMS
(Ionization Coupled Mass spectrometry) technology at
the Department of Chemistry, Laval University for T0
and T1, then at INRS (Institut National de la Recherche
Scientifique), Quebec, for T1-T3. For water, before
ICPMS analysis of Cd ions, the CdCl2 in water samples
(10 ML tubes) was fixed by adding 4% of nitric acid. The
metals ions (Cd, Cu, Zn) concentrations were measured
in water every week until the end of the CdCl2 exposure
regimes. For fish, liver samples after lyophilisation were
digested with purified nitric acid and kept at room
temperature for 5 days. The liver acid digestion protocol
was adapted from Pierron et al. [50]. For further details,
see the Supplementary file 2. The metal concentrations
were analysed using a two-way analysis of variance
(ANOVA) of two independent factors: time and treat-
ment. The interactions between time and treatment fac-
tors (the interaction means that the effect of treatment
depends on time) were analysed using Tukey’s test and
Wilcoxon rank test depending on the data (metal con-
centration) after assessing the normality of data
distribution.

DNA extraction to Illumina Miseq sequencing
DNA was extracted from all skin mucus and water sam-
ples using the Qiagen DNeasy Blood and tissue kit (Sup-
plementary file 2). For all intestine samples, after an
RNA extraction for a transcriptomic project, the DNA
was extracted from TRIzol organic phase using BEB
(back extraction buffer) and PCI (phenol/chloroform/
isoamyl alcohol 25:24:1) solution (Supplementary file 3).
The 16S ribosomal DNA was amplified via PCR using
universal primers specific to the V3-V4 hypervariable re-
gion of the rDNA 16S gene [51]. The purified product of
first-round PCR was used as a template for the library
preparation by performing second-round PCR. Final
amplified DNA was verified by electrophoresis on 2%
agarose gel, and finally, DNA concentration of the prod-
uct was quantified by fluorescence using Quant-iT™
PicoGreen™ dsDNA Assay Kit (Thermo Fischer
Scientific).

Analysis of 16S rDNA amplicons
Sequence analysis was performed with our bioinformatic
pipeline as described previously [27, 40]. The code of
our pipeline is available on Github (https://github.com/
BachBioinformatics/MicrobiomePipelines). After the
construction of OTUs table, a decontamination step was
performed using BWA mapper [52] implemented in
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DeConseq tool [53], which consisted of mapping the
OTUs sequences against the draft genome of Perca fla-
vescens available on NCBI (98% identity threshold). The
analysis of the alpha and beta diversity of metacommu-
nities was proceeded using the Rhea package [54]. After-
wards, the significance of variations in alpha-diversity
indexes (richness and evenness) and beta-diversity
(phylogenetic distance) divergence between experimental
groups was assessed using pairwise and multiple rank
statistics tests (Wilcoxon /Kruskal-Wallis). Beta-diversity
was measured using generalised UniFrac distance [55],
which considers both dominant and rare OTUs. P-values
of pairwise comparisons in alpha and beta-diversity were
validated with multiple correction tests [56] using the B-
H (Benjamini-Hochberg) for avoiding the Type I errors
(false positives).

Correlational networks analyses
The Spearman coefficients supported with multiple cor-
rections test Benjamini-Hochberg (BH) were computed
to measure the correlations between OTUs. This coeffi-
cient was recently demonstrated as a robust approach in
terms of sensitivity and precision of correlation detection
[57]. Only strong correlations (p-value BH < 0.05) posi-
tive (Corr > 0.6), and negative (Corr < − 0.6) were visual-
ized in the OTU networks. Cytoscape software [58] was
used to perform network visualization and analysis. The
number of components indicated the fragmentation
(number of subnetworks) in each community per condi-
tion. Each node size in the network was proportional to
the average OTU’ relative abundance in all the samples
per group. Although Spearman and new methods of net-
works inference [57] are comparable, possible bias of in-
direct associations of nodes can be generated by
spearman coefficient [59]. To deal with this bias, the
SPIEC-EASI (SParse Inverse Covariance Estimation for
Ecological Association Inference) method [59] was used
to supplement the OTUs networks built with spearman
coefficient. In SPIEC-EASI networks, to avoid false-
negative correlations, the OTUs which occur in less than
three samples were combined in one synthetic OTUs.
To compare the connectivity of networks between differ-
ent groups, the average of nodes degree was compared
using the Kruskal-Wallis test. Also, the modularity of
different networks was assessed with the Markov Clus-
tering Algorithm (MCL) using a value of 2.5 as a reason-
able inflation parameter (granularity) of clustering [60].
Modularity is a measure of network structure that was
designed to measure the strength of division of a net-
work into modules. Networks with high modularity have
dense connections between the nodes within modules
but sparse connections between nodes in different mod-
ules [61].

Metacommunity assembly modelling
To investigate the role of neutral processes in commu-
nity assembly, we fit the distribution of OTUs to a neu-
tral model of microbial assembly [16] using a non-linear
least-squares approach and beta distributions, which has
recently been implemented by Burns and colleagues
[22]. The neutral model compares the frequency of
OTU occurrence to their abundance in the metacommu-
nity by estimating a parameter (m), which represents the
migration rate and which can be interpreted as a meas-
ure of dispersal limitation (low migration rate means
high dispersal limitation) [22]. The estimated migration
rate (m) is the probability that a random loss (death or
emigration) of an OTU in a local community is replaced
by dispersal from the metacommunity source [22]. The
temporal comparisons (T0-T1; T1-T3) of predicted ver-
sus observed OTU frequencies from the neutral model
were used to highlight the percentage of OTUs fitting
the model with a confidence interval of 95%. The good-
ness of fit to the neutral model was assessed using R-
square as the coefficient of determination. R-squared
equal or higher to a value = 0.5 is an acceptable thresh-
old of the goodness of fit to Sloan’s neutral model [16].
In addition to Sloan’s model, to quantify the ecological
stochasticity in the community structure, the new pro-
posed index, normalized stochasticity ratio (NST) was
computed to estimate the ecological stochasticity based
on beta diversity [62]. The NST index was used here to
estimate the average stochasticity between local commu-
nities (treatments and control) using Jaccard and
Ruzicka metrics (recommended by the authors of NST
model) and “fixed proportion” as null-model which
means that the occurrence probability of a taxon is pro-
portional to its observed occurrence frequency. The
NST values were computed using the function “tNST”,
then because pairwise comparisons of observed/null dis-
similarity values are not independent, bootstrapping ana-
lysis based random comparisons (N = 1000) for
stochasticity ratio was also performed.

Results
Metal concentrations, diversity measures and taxonomic
composition
In water, the difference in Cd concentration is significant
between all treatments (CC, CV or Control) at T1 and
T3. In the fish liver, the difference is only significant at
T3 (Supplementary Table 1). For alpha-diversity, the
treatment reveals a significant effect only on the even-
ness (Shannon effective) in the skin mucosal communi-
ties at T1, and on the richness in the gut communities
at T3 (Figs. 1a-b and 2a-b). The Cd treatment reveals
also a significant imbalance in the taxonomic compos-
ition in the skin microbiome at T1 (Table 1). The statis-
tical comparisons using both diversity indices for
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Fig. 1 Diversity, structure, and assembly of the skin microbiome. a highlights the negative correlations in the co-abundance networks of skin
microbial community. Each node size in the network is proportional to the average of the OTUs relative abundance in all samples. These
networks are based on significant Spearman coefficients and were constructed using R scripts and Cytoscape software. b shows the boxplots of
the significant difference in alpha-diversity (Shannon effective). c summarises the statistical tests of alpha-diversity and beta-diversity (Gunifrac
distance). d represents the PCOA 3D plot of the microbial skin communities of all treatment groups based on the significant difference of
generalized Unifrac distances tested with PERMANOVA, MRPP and multiple correction test (See Supplementary Table 3) e reports the distribution
of neutrality versus abundance cut-off and goodness of fit. The plot shows the variation of neutral OTUs percentage (Y-axis) along with the
goodness of fit predicted by NLS models using 12 cut-offs of relative abundance averages (facet panels) in the skin metacommunity at T1 and T3

Cheaib et al. Animal Microbiome             (2021) 3:3 Page 5 of 19



evenness and richness demonstrate the importance of
time as a driver in microbial community richness, even-
ness (Fig. 1a, Supplemetal Figure 1, Supplemetal Table
2), and taxonomic composition (Supplemetal Figures 2

and 3) rather than treatment. For beta-diversity (GUni-
Frac distance), by T1, significant differences (BH p-
value < 0.05 of significant PERMANOVA tests) among
treatments are only observed in the mucosal skin
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Cheaib et al. Animal Microbiome             (2021) 3:3 Page 6 of 19



communities (Supplemetal Table 3, Fig. 1b-c); however,
by T3, both cadmium exposure regimes indicate signifi-
cant changes in both skin and gut microbial communi-
ties compared to the control (Supplementary Table 3,
Fig. 2b-c). Among water microbial communities, the
phylogenetic distance between treatments and control is
significantly different at every time points (BH’s p-value
of PERMANOVA tests for CC-Ctrl T1: 0.0135; CC-Ctrl

T3: 0.002; CC-CV T1: 0.136; CC-CV T3: 0.0015; CV-Ctrl
T1: 0.006; CV-Ctrl T3:0.0015). Interestingly, the phylo-
genetic distance between CV and CC treatments be-
comes significant at T3 (Supplementary Table 3;
Supplementary Figure 4).
Overall, the effect of treatment on the host-microbiota

for beta diversity is more significant than time (i.e.
microbiota ontogeny) for skin (T1, T3) and gut (T3)
microbiota. Contrastingly, for alpha diversity, the effect
of time is more significant than treatment. To explore
the effect of Cd treatment on the interactions within and
between host and water microbial communities we ana-
lyzed the networks parameters mainly degree and
modularity.

Substantial role of rare taxa in microbiome network
connectivity
Within gut microbial communities, the high abundant
OTUs are peripheral (with minimal interactions) or

disassortative (not connected) to the giant network com-
ponent, see [63], suggesting low overall connectivity (Fig.
2d). Within skin and gut microbiome networks, no cor-
relation was found between the degree (number of con-
nections per node) and the average relative abundance
of OTUs (nodes size in the network). However, given
that the high abundance is a feature of few OTUs, most
of the connections within host-microbiome networks
occur among rare or low abundant OTUs (relative abun-
dance < 0.1%) – especially in skin communities early in
both Cd exposure regimes a T1 in the networks of Cd
treatment groups (Fig. 1d).

Poor connectivity in gut microbiome network reflects cd
selection regimes
The exposure to Cd has also a significant impact on net-
work connectivity and integrity in the gut microbial
communities. In the control group, most abundant
OTUs were connected to a central hub (Fig. 2d). How-
ever, in the Cd-treated groups, the most abundant OTUs
(> 1%) were gradually disconnected from the main net-
work in small independent hubs or sub-networks. Con-
sidering the MCL clustering of gut microbiome
networks into modules, the modularity indicates higher
values at time T1 in Cd treatment groups (Ctrl modules =
12; CV modules = 41; CC modules = 44). However, at time
T3 the network’s modularity is higher in the control

Table 1 Statistical summary of taxonomic significant changes between treatments

Phylum-Genus Group1 Group2 Wilcoxon Rank Sum Test − pairwise p-value Adj. p − value

p__Bacteroidetes Ctrl CC 0.0003 ** 0.0004 **

Ctrl CV 0.0001 *** 0.0001 ***

CC CV 0.767 0.767

g__Emticicia Ctrl CC 0.0005 ** 0.0008 **

Ctrl CV 0.0001 *** 0.0003 **

CC CV 0.891 0.891

g__Flavobacterium Ctrl CC 0.0028 * 0.0042 *

Ctrl CV 0.0001 *** 0.0003 **

CC CV 0.3305 0.3305

g__Pseudorhodobacter Ctrl CC 0.0065 * 0.0176 *

Ctrl CV 0.0117 * 0.0176 *

CC CV 0.5336 0.5336

g__Shinella Ctrl CC 0.0001 *** 0.0002 **

Ctrl CV 0.0001 *** 0.0002 **

CC CV 0.9268 0.9268

g__Sphaerotilus Ctrl CC 0.0039 * 0.0058 *

Ctrl CV 0.0006 ** 0.0018 *

CC CV 0.736 0.736

This table resumes the main important significant changes of the taxonomic composition, at the phylum and genus levels, between treatments in the skin
microbiome at time T1. Pairwise comparisons were performed using the Wilcoxon Rank Sum Test – pairwise. P-value < = 0.05: “*”; p-value < = 0.001: “**” ; p-value
< = 0.0001: “***”
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group (Ctrl modules = 94; CV modules = 50; CC modules =
65) (Table 2; Supplementary Table 4). In term of nodes
connectivity, the average degree was higher in the con-
trol group compared to Cd treatment groups at T1 and
T3 (Fig. 3; Supplementary Table 4).

Negative correlations in the skin microbiome network
suggest dysbiosis under disturbance
In skin microbial community, the correlational networks
at time T1 are characterised by high modularity (Ctrl
modules = 12; CV modules = 41; CC modules = 42) (Table 1;
Supplementary Table 4) and a significantly high average
degree in the Cd treatment groups (Fig. 3). However, at
time T3, like in the gut microbiome, the skin micro-
biome networks indicate higher modularity in the

Table 2 Host microbiome networks modularity

Skin microbiome network T0 T1 T3

Ctrl 78 47 42

CV 51 104 28

CC 56 149 30

Gut microbiome network T0 T1 T3

Ctrl 375 12 94

CV 315 41 50

CC 445 44 65

This table resumes the number of modules obtained from MCL clustering of
edge betweenness (see Materials and Methods) of skin and gut
microbiome networks
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Fig. 3 The average degree of host-microbiome networks over time and between treatments. The connectivity represented with violin plots are significantly
higher in average for the control groups in the gut and the skin at time T3, whilst at T1, they were significantly higher for cadmium-treated groups only in
the skin. The average of nodes’ degree computed with Network Analyzer was compared using the Kruskal-Wallis test followed by Benjamini-Hochberg test.
The value of 0.05 is the threshold of B-H p-value significance. Only the significant Dunn test p-values for pairwise comparisons are displayed on this figure,
however in order to improve visibility, the significant p-values of Kruskal-wallis test for multiple groups comparisons were not plotted
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control group (Ctrl modules = 42; CV modules = 28; CC mod-

ules = 30), and significantly high average degree. The
higher average degree connectivity observed in CV and
CC relative to the Control treatment at T1 is manifest in
the significantly high percentage of significant negative
correlations (red edges in networks of Fig. 1d) observed
in those groups (CV neg. corr.: 6.9%; CC neg. corr.: 6.3%)
compared to the control group (Control neg. corr.: 2.2%).
A significant increase over time (T0-T1) in the abun-
dance of Tenericutes (T), and Bacteroidetes (B), and de-
crease of Firmicutes (F),and Proteobacteria (F)
(Supplementary Table 5) is associated with nodes impli-
cated with negative correlations in the control group
Ctrl (T:6% B: 3% F: 6% P: 63%), CV (T:6% B:7% F: 19%
P: 57%) and CC (T:8% B: % 7 F: 13% P: 61%). In fact, at
the time T1, the Bacteroidetes have significantly in-
creased over time in the skin for CC & CV groups (Sup-
plementary Table 5), not for control, showing a
significantly higher abundance in skin compared to
water and gut microbial communities for Cd groups
(Supplementary Figure 5). Like Bacteroidetes, few nodes
are exclusively implicated in negative correlations in CC
and CV for Synergistetes (~ 1%), Acidobacteria (~ 1%),
and Deinococcus-Thermus (~ 1%). Interestingly, how-
ever, Euryarchaeota (E) is more implicated in negative
correlations within the control group Ctrl (10%), than
CV (2%) and CC (1%).

Fragmentation of water microbiome network explains
community dynamics
The water microbiome networks are fragmented, both
over time and among treatments (Fig. 4; Supplementary
Table 4). There was a notable lack of Tenericutes (Myco-
plasma) in comparison to the skin and intestinal micro-
bial communities’ networks. The degree average is
significantly high in the control group of water micro-
biome networks at T1 and T3 (Fig. 5). Overall, the struc-
ture of the water networks encompassed small,
disconnected worlds of independent hubs.

Metacommunity dynamic indicates niche specialisation
and time effect
The dynamics of interactions of water microbial com-
munities with the different host (skin and gut) micro-
biomes reveal the similar structure of networks between
treatments, but not overtime. At T1, the subnetwork as-
sembling gut nodes is weakly connected to the modules
of the water and skin microbial subnetworks. A T3, the
three microbial subnetworks of water, gut and skin are
almost disconnected within the Cd treatment groups
and weakly connected in the control group (Fig. 6). The
comparison of connectivity assessed with nodes degrees
and represented with violin plots (Supplementary Figure
6) indicate that the average of connections is

significantly higher in the skin compared to the water
and gut microbiomes in all treatments and at all time
points. However, at T1 the connectivity converged
(which means not significantly different) between the
water and skin microbiome for cadmium-treated groups.
The comparison of centrality assessed with nodes close-
ness centrality and represented with violin plots (Supple-
mentary Figure 7) indicates that the average of
connections is significantly higher in the skin compared
to the water and gut microbiomes in all treatments at
T0 before disturbance. However, at T1 the average node
centrality converged (which means not significantly dif-
ferent) between the water and skin microbiome for
cadmium-treated groups. At T3, the centrality of node
converged between the gut and skin microbiome in the
control group. Finally, from a methodology point of
view, the networks built with SPIEC-EASI method and
Spearman coefficient converge to similar topologies (see
the gut and skin microbiome networks built with SPEIC
method in Supplementary Figure 8).

Stochasticity and determinism involved in water and
host-associated bacterial community assembly
In host and water bacterial communities, considering all
the OTUs without any filtration of abundance, the oc-
currence frequency of the majority of OTUs in the Gut
(CCT1:T3 = 93:85%; CVT1:T3 = 94:88%; CtrlT1:T3 = 99.6:
99.4%), the skin (CCT1:T3 = 83:91%; CVT1:T3 = 86:88%;
CtrlT1:T3 = 99.4:99.3%) and the water (CCT1:T3 = 81:99%;
CVT1:T3 = 75:88%; Ctrl T1:T3 = 97:93%) was confidently
predicted by the NLS model (Supplementary Table 6,
Figs. 1e and 2e). According to this model, the percentage
of neutral OTUs and the goodness of fit (R2) are always
higher in the control group compared to both Cd-
treated regimes in water and host communities (Supple-
mentary Table 6). The percentage comparison of neutral
OTUs between different models could not quantify the
relative impact of the non-neutral OTUs (overfit or
underfit the model) because the goodness of fit and the
estimated emigration rate with maximum likelihood
(m.mle) varied between water and host models (Supple-
mentary Table 6). The emigration rate in the NLS model
predicts the stochastic demography in community as-
sembly. So, at T1, the comparison of the estimated emi-
gration rates indicates that stochasticity was higher in
the water microbiome compared to host microbial com-
munities in the Control (GutT1 = 0.172; SkinT1 = 0.200;
WaterT1 = 0.326), CV (GutT1 = 0.118; SkinT1 = 0.204;
WaterT1 = 0.423) and CC (GutT1 = 0.129; SkinT1 = 0.242;
WaterT1 = 0.335). Similarly, at T3, the migration rate in-
dicates higher stochasticity in water compared to the
host-microbial communities for the Control (GutT3 =
0.269; SkinT3 = 0.177; WaterT3 = 0.488), and CV
(GutT3 = 0.351; SkinT3 = 0.138; WaterT3 = 0.424) groups,
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but not for the CC (GutT3 = 0.564; SkinT3 = 0.169;
WaterT3 = 0.362). Investigating the relationship of OTU
abundance and neutrality, our analysis indicates that the
percentage of neutral OTUs decreased in the Ctrl groups
compared to Cd-treated groups, in host and water mi-
crobial communities at T1 and T3, especially when the
low abundant OTUs were discarded from the NLS
models (see the neutral OTUs percentage and goodness
of fit across OTUs abundance cut-offs, Figs. 1e and 2e,
Supplementary Figure 9, Supplementary Table 6).
To quantify the ecological stochasticity in the commu-

nity structure, we applied a null modelling approach

using normalized stochastic ratio (NST) index (see Ma-
terials and methods). When NST is higher than 0.5, the
community structure is more likely driven by the neutral
processes, whilst when the NST is lower, the main driv-
ing processes are deterministic. According to the results,
at each time point, and in all treatments, the average of
NST (NSTavg.) for almost all communities is higher than
0.5 (Fig. 7). Comparing stochasticity ratios between
water and host microbiota, the NST modelling lead to
same results of NLS models. The NSTavg. values indicate
stochasticity equal (at time T0) or higher (at T1 and T3)
in water compared to the gut and skin microbiota.

[Phylum : Tenericutes]

[Phylum : Proteobacteria]

[Phylum : Firmicutes]

[Phylum : Euryarchaeota]

[Phylum : Actinobacteria]

[Phylum : Bacteriodetes]

[Phylum : Acidobacteria][Phylum : Chlorobi]

[Phylum : Fibrobacteres]

Ctrl : Control  ; CV : Cadmium Variable ; CC : Cadmium Constant 

[Phylum : Fusobacteria]

Fig. 4 Correlational co-abundance networks of water microbial community. Water microbial community networks displayed fragmented
interactions, over time and between treatments — the topology of water microbial encompassed sub-networks disconnected in small
independent hubs. The number of independent hubs was the highest in Control network at T0 and T3, at T3 in CC, and it was always
intermediate in CV network (see the Supplementary Table 3). These networks are based on significant Spearman coefficients and were
constructed using R scripts and Cytoscape software
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When it comes to comparing the magnitude of stochas-
ticity between treatments and control in each commu-
nity type structure, both NST and NLS models agree in
terms of the dominance of neutral processes in the com-
munity assembly (goodness of fit R2 > 0.5), and structure
(NSTavg > 0.5), although giving further insights in both
demographical and ecological aspects, respectively. With
NLS model, the percentage of neutral OTUs and the
goodness of fit are always higher in the control group,
suggesting that a higher proportion of non-neutral
OTUs influenced demographical dynamics in Cd-treated
groups relatively to control group. With NST models,
the ecological stochasticity in the community structure
was significantly higher (NSTavg > 0.5) that the null hy-
pothesis in all groups. Furthermore, higher averages of
ecological stochasticity were observed under perturba-
tions in Cd-treated groups early at T1 in the skin micro-
biome and lately at T3 in the gut microbiome (Fig. 7).

Discussion
Our study evidenced salient differential changes in com-
munity assembly across three community types (envir-
onmental or host-associated), time and xenobiotic
exposure regimes. This study for the first time highlights
the relative contribution of neutral and non-neutral fac-
tors in shaping the microbiota during the early life-
stages of an ecotoxicology vertebrate model. First, alpha
diversity increased significantly in the skin and gut
microbiota in both constant and gradual selection re-
gimes. Then, at the community-level, significant phylo-
genetic divergence was observed between the control

and treatment groups in the three community types at
two specific time points, T1 and T3. These two key time
points were investigated further with co-abundance net-
work analysis and community assembly modelling. Fre-
quent significant negative correlations between taxa in
both selection regimes in the skin and the increasing
richness of environmental bacterial strains suggest a dys-
biosis in the mucosal host-associated microbiota [64,
65]. Negative correlations between OTUs occur is all
groups at time T1, but they are remarkably more fre-
quent in both selection regimes within the skin micro-
biome networks. In many studies, the increase of
negative correlations in networks was associated to
microbiota dysbiosis in several contexts of human lung
infectious diseases [66–68], in dog’s gut (Vázquez-Baeza
et al. [69]) and macaque model of tuberculosis for in-
stance. Furthermore, network connectivity under stress
was maintained by rare OTUs, while abundant OTUs were
mainly composed of opportunistic invaders such as Myco-
plasma and other genera related to fish pathogens like
Aeromonas, Pseudomonas and Flavobacterium [70, 71].
Lastly, to predict the nature of evolutionary processes

driving the metacommunity assembly under Cd pertur-
bations, the fit of the neutral model, based non-linear
least squares (NLS), indicates that neutral processes pre-
dominantly drove taxonomic drift during the assembly
of host and water microbial communities in all experi-
mental groups (R2 > 0.5). However, regarding the per-
centage of neutral OTUs between groups suggests
significantly lower stochasticity of community assembly
in Cd-treated groups. At this point, from the higher
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Fig. 5 The average degree of water microbial networks over time and between treatments. The connectivity represented with violin plots is
significantly higher on average for the control groups in the gut and the skin at times T3 and T1. The average of nodes’ degree computed with
Network Analyzer was compared using the Kruskal-Wallis test followed by Benjamini-Hochberg test. The value of 0.05 is the threshold of B-H p-
value significance. Only the significant Dunn test p-values for pairwise comparisons are displayed on this figure, however in order to improve
visibility, the significant p-values of Kruskal-wallis test for multiple groups comparisons were not plotted
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Fig. 6 (See legend on next page.)
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percentage of non-neutral OTUs, we propose that Cad-
mium perturbations have an effect not only on the com-
munity assembly but also on the community structure.
Previous studies quantified high ecological stochasticity
in the community structure under perturbations by sug-
gesting specific [72] and general indexes [62] of stochas-
tic strength. The application of NST model to our data
(NSTavg > 0.5) confirms high ecological stochasticity in
the community structure changes under disturbance, as
suggested by Ning and co-authors [62], and this result
agrees with the dysbiosis and the model of resistance to
colonisation. However, we disagree with the Ning et al.
(2019) [62] on the comparison of the NLS model with
NST indexes, because this comparison is meaningless.
The general NST null model was developed for quantita-
tively assessing ecological stochasticity, while the NLS
model Sloan’s neutral model was developed for quantita-
tively assessing the demographic stochasticity. Initially,
the NST model was developed and applied to estimate
the stochasticity strength during the succession of a
groundwater microbial community in response to per-
turbations caused by organic carbon (vegetable oil) in-
jection [62]. The authors of NST have also compared
their model index with not normalized stochasticity
strength measure (an early version of NST) [72] and the
percentage of neutral OTUs predicted by the NLS of
Sloan’ model [22]. NST demonstrated high stochasticity
under perturbation (oil injection), and in our host-
microbiome system, we found the same trends. On the
other side, the NLS model has different assumptions
based on the estimation of the emigration rates (can be
interpreted as dispersal limitation index) from a commu-
nity source but not based on an ecological similarity/dis-
similarity distance. To our knowledge, with the NST
model, we could not distinguish between neutral and
non-neutral OTUs or quantify a migration rate to assess
the dispersal ability from the community structure. From
our point of view, the comparison of NST with NLS
could not infer the relative contribution of deterministic
processes. The NST authors ‘model also acknowledged
in their discussion that the operational distinction of sto-
chasticity and determinism can appear somewhat arbi-
trary with their NST index, and it is difficult to
distinguish ecological stochasticity from the noise caused

by deterministic environmental factors, as shown in their
simulation [62].
Last not least, we would stress that NLS model, with

our null hypothesis based on a real bacterial community
(i.e. the control community), detected non-negligible
proportion of non-neutral OTUs, potentially suggesting
that host-microbiota assembly partly resulted from de-
terministic processes. Although moderate, the percent-
age of OTUs not fitting the NLS model in both Cd
regimes may suggest patterns of deterministic effects on
microbiota recruitment [27] host filtering and Cd treat-
ment. The host filtering can be interpreted lately at T3
throughout the network’s modularity and average con-
nectivity in the control group. The high modularity and
degree observed at T3 would approach specialized, parti-
tioned microbiome networks in the gut and skin [73,
74], reflecting niche differentiation [75] and microbiota
maturation along with perch juvenile’s development [3].
However, in an opposite direction, the gut and skin net-
works modularity and degree decreased over time to
reach a lower average in CC & CV groups, suggesting
broader niche partitioning [74] and lesser interactions
and more stochastic changes under disturbance [62].
The dominant ecological stochasticity quantified under

disturbance left interesting patterns in the community
structure of the skin microbiota. At T1, significant
phylogenetic divergence occurred between treatments
(CC & CV) and control (Control). Most importantly, a
taxonomic convergence between treatments (CC & CV)
not only in the skin but also within the water commu-
nity occurred. This convergence mainly resulted from an
invasion of environmental bacterial strains in the skin.
The significant increase of Bacteroidetes only in treat-
ments groups (CC &CV) in skin communities compared
to water communities could strongly support this hy-
pothesis. Such gain or loss of tissue-specific community
type suggests a disruption of the host’s ability to control
the assembly of skin microbiota, which is correlated with
Cd exposure. This phenomenon is termed “direct colon-
isation resistance” [76]; however, we do not exclude that
this colonisation failure also resulted, at least partly,
from a host immune system failure (termed as “immune
colonisation resistance”). This compositional disruption
translated into many negative correlations between taxa

(See figure on previous page.)
Fig. 6 Statistical analysis of the node degree in the water and host-microbiome networks. The comparison of connectivity assessed with nodes
degrees and represented with violin plots indicate that the average of connections is significantly higher in the skin compared to the water and
gut microbiomes in all treatments and at all time points. However, at T1 the connectivity converged (which means not significantly different)
between the water and skin microbiome for cadmium-treated groups. The average of nodes’ degree computed with Network Analyzer was
compared using the Kruskal-Wallis test followed by Benjamini-Hochberg test. The value of 0.05 is the threshold of B-H p-value significance. Only
the significant Dunn test p-values for pairwise comparisons are displayed on this figure, however in order to improve visibility, the significant p-
values of Kruskal-wallis test for multiple groups comparisons were not plotted
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Fig. 7 Comparative analysis of stochasticity ratios averages between treatments. The NST values were computed using the NST model available
in the R package. With this model the” Proportional fixed” null-model, Jaccard similarity coefficient (also known then as Ruzicka similarity) and
n = 1000 for random permutations were used to compute the normalized stochasticity ratios. The NST in each group represented in violin plots
were compared for their average using Kruskal-Wallis test followed by Benjamini-Hochberg as a multiple correction test. Only the significant
Dunn test p-values for pairwise comparisons are displayed on this figure, however in order to improve visibility, the significant p-values of Kruskal-
wallis test for multiple groups comparisons were not plotted
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in both selection regimes in the skin-associated micro-
biota at T1. Furthermore, the impact of Cd exposure on
skin community structure was also observed at T3,
where the phylogenetic distance became significantly di-
vergent, even between both selection regimes, where
many negative correlations were detected between taxa.
In addition to the increasing invasion of environmental
bacterial strains in the skin (i.e. failure of colonisation
resistance, see [76]), and the rise of negative correlations
suggest a dysbiosis state of skin-associated microbiota
[66–69, 77]. This dysbiosis might be associated not only
with an increase in evenness and phylogenetic conver-
gence with the water bacterial community but also with
the rise of antagonism among OTU co-abundance net-
works in both selection regimes (CC & CV). Most of an-
tagonism was mediated through rare and abundant
Tenericutes (Mycoplasma) and Proteobacteria. Depend-
ing upon the strain, Mycoplasmas are thought to be ei-
ther fish opportunists, or innocuous commensals in fish
[78, 79]. In comparison to the skin, the significant diver-
gence between control (Control) and treatments (CC,
CV), and the rise of negative correlations, appeared later
in the gut community: at T3. This delayed pattern of
dysbiosis strongly suggests that the physiological impact
of cadmium exposure was mitigated more effectively
within the gut. In fish (and other vertebrates), the liver is
the main organ to accumulate xenobiotics including cad-
mium. Therefore, the late compositional change in the
gut microbiota potentially occurred when bioaccumula-
tion of cadmium within the liver reached its maximum
carrying capacity. Another noticeable compositional
change was the disconnection of abundant taxa from the
main gut interacting network, which was proportional to
the stress intensity. By T3, the overall taxonomic net-
work connectivity was formed exclusively from rare
OTUs. Contrastingly, abundant OTUs were peripherals
and disconnected from central hubs [63], mainly com-
posed of putative opportunistic invaders such as Myco-
plasma and other genera encompassing strains
associated to fish pathogens, like Bacillus (> 6% in CC
and CV). As observed in other fish species such as At-
lantic salmon (Salmo salar) [80] and the long jaw mud-
sucker (Gillichythys mirabilis) [81, 82], Yellow Perch
have intestinal microflora dominated by Tenericutes
(Mycoplasma sp.). It is therefore difficult to conclude
whether the increase of several Mycoplasma strains is
beneficial or not to the host. Concerning Bacillus, a
similar increase was associated with irritable bowel dis-
ease (IBD) in dogs and negatively correlated with bacter-
ial strains associated with healthy individuals [69].
Interestingly, rare OTUs and negative correlations did
not play an essential role in water co-abundance net-
works, which were highly fragmented in Cd treatment
regimes, and the average connectivity was significantly

higher in the control regime. It is worthy to notice that
the taxonomic composition of water bacterial communi-
ties was characterized by a very low occurrence of
Tenericutes (Mycoplasma) compared to host communi-
ties. The metacommunity networks combining host and
water bacterial communities highlights the niche diver-
gence and dynamics between the water bacterial com-
munities and each of the host microbiota. A T0, all
these community types showed interactions within a dis-
tinctive structure of subnetworks, which differentiated
over time in independent hubs weakly connected (better
connected in the control group).
Finally, low abundant or rare OTUs have been demon-

strated to play a pivotal role in community assembly
[35–39] either in promoting homeostasis [37] or dysbio-
sis [83]. Therefore, we applied the NLS model to disen-
tangle neutral and non-neutral evolutionary processes
that were at play for rare OTUs. The variation of the
presence of neutral OTUs across different abundance
cut-offs (Supplementary Table 6) suggested a neutral
role around 35 to 50% of rare OTUs in host water com-
munities. Overall, our data demonstrated that stochastic
processes mainly drove taxonomic drift even under Cd
disturbance. However, host-microbiota assembly evolved
by involving non-neutral processes in cadmium treat-
ment groups, although this trend was less salient in both
experimental groups at T3. The majority of the OTUs
that did not fit the neutral model was assigned to Myco-
plasma genus under and after the exposure during the
recovery period [40]. The assembly of gut microbial
communities may have evolved under non-neutral pro-
cesses due not only to the cadmium as a disrupting fac-
tor but also due to the selection imposed by the host
development [22].

Conclusions
In this experimental evolution study, our findings dem-
onstrate the extensive involvement of low abundant
(rare) taxa throughout community assembly and inter-
acting network connectivity under perturbations. We
have unearthed a niche-specific response to cadmium
disturbance. In the skin microbiome network, we de-
tected early signals of antagonistic interactions by a pre-
ponderance of negative correlations, whilst at the same
time, the overall connectivity in the gut microbiome was
degraded over time. The network topology in the control
group suggests specialized, partitioned microbiome in-
teractions in the gut and skin, reflecting niche differenti-
ation and microbiota maturation along with perch
juveniles’ development. On the other hand, the network
topology for Cadmium-treated groups suggests a
broader niche, fewer interactions. Considering the mod-
elling frameworks, neutral processes were thus the major
forces of the community assembly in the environmental

Cheaib et al. Animal Microbiome             (2021) 3:3 Page 15 of 19



microbiome, although involving a low percentage of de-
terministic changes in the host-microbiota under dis-
turbance. The taxonomic convergence between water-
and skin-associated bacterial communities across both
cadmium exposure groups highlights the loss of the
colonization resistance capacity of the host. This was
due to physiological stress experienced by the host: cad-
mium bioaccumulation in Perch’s liver has already been
documented to disrupt host physiology. By highlighting
the link between a loss of colonization resistance and
dysbiosis within the host (which in turn is known to in-
duce an inflammatory response), our results will be use-
ful not only for the field of microbial ecology but also
for biomedical research, as dysbiosis of gut microbiome
composition has been shown to result in the onset of
various inflammatory diseases such as diabetes, IBD,
Crohn disease, cancer, and obesity [84–86].

Perspective
The patterns of neutral and non-neutral assembly in
contrasting types of bacterial communities (i.e. one en-
vironmental and two host-associated) described here
provide novel key insights regarding our understanding
of evolutionary forces that are at play in shaping the
host-microbiota when facing sublethal environmental
stress. Living organisms are currently facing unprece-
dented levels of environmental stressors that impact
their capacity to cope with natural pathogens, essentially
by altering their overall immune defence. Therefore,
there is an urgent need to accurately decipher the early
warning signals occurring at the first stages of xenobiotic
exposure.
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Additional file 1: Table S1. ANOVA summary of metals concentrations
in water tanks and Perca flavescens fish livers. Tukey and Wilcoxon’s tests
showed that the Cadmium concentration in fish liver and water has
significantly changed between treatments and Control; Constant
Cadmium regime (CC), Variable Cadmium regime (CV), and Control
(Control) and overtime. No significant changes were observed in Zinc
and Cooper between treatments.

Additional file 2: Table S2. Statistical summary of alpha-diversity
changes over time and treatments. Over time, the richness and evenness
have significantly changed in treatments and Control for all types of
communities. The significant changes of alpha-diversity between treat-
ments and Control were statistically demonstrated (Table 2b) using rank
statistics tests (Kruskal-Wallis/Wilcoxon). The same statistics were used to
compare alpha-diversity overtime. Overall, the evenness in microbial skin
communities has significantly diverged between treatments and Control
at T1, and richness in Gut microbial communities at T3.

Additional file 3: Table S3. Phylogenetic divergence in host and water
microbiomes. The phylogenetic distances between OTUs were computed
using Gunifrac distance (see Materials and Methods). The divergence
between treatments and control was assessed using PERMANOVA, and
the homogeneity for group dispersions (distance from centroid) was

evaluated using two multivariate tests, BETADISPER and Multi-Response
Permutation Procedure (MRRP) of within versus among group dissimilar-
ities. The significance of divergence between groups was measured by
applying multiple correction tests with Benjamini-Hochberg BH (p-value<
0.05).

Additional file 4: Table S4. Summary of correlation network features in
host and water microbial communities. The networks of gut microbial
communities are composed of 30, 46, 65 of CC (connected components
or hubs), respectively in Control, CV, and CC groups (see sheet 1).
Therefore, the nodes number (NN) was lower in the Control group
(ControlNN: 410) compared to Cd regimes networks (CVNN:488; CCNN:526).
On the contrary, an average of neighbours (AN) was higher in the
Control network (Control AN: 4) than in Cd groups networks (CVAN:2.98;
CCAN:2.82). Skin microbial networks were composed of 47, 10, 3 of CC
(connected components), respectively in Control, CV, and CC groups (see
sheet 1). The number of CC was inversely proportional to nodes number,
and low in Control group network (ControlNN: 651) in comparison with
Cd networks (CV NN: 661; CC NN:759). Similarly, the average of neighbours
(AN) was lower in the Control network (Control AN: 4) compared to Cd
group networks (CVAN: 10.7; CCAN: 24.6). This high connectivity in CV and
CC at T1 was proportional to the high percentage of strong negative
correlations (R neg. Corr. < − 0.6; B-H p-value < 0.05), observed in those
groups (CV neg. Corr.: 6.3%; CC neg. Corr.: 6.9%) compared to Control
group (Control neg. Corr.: 2.88%). Water microbial networks indicate vari-
ables features over time and between regimes (see sheet 2).

Additional file 5: Table S5. Significant taxonomic changes in water
and host-microbial communities over time and between treatments. In
the gut, the significant changes in the relative abundance between T0
and T1 were detected for Synergistetes in CC and Tenericutes in CC and
CV. Later, between T1 and T3, the relative abundance of four phyla, Eur-
yarchaeota, Firmicutes, Proteobacteria, and Tenericutes has significantly
changed in all groups. In the skin, between T0 and T1, the significant
changes were observed for Firmicutes and Fibrobacteres in the CV, and
Bacteroidetes and Fusobacteria in CC and CV. However, between T1 and
T3, the significant changes of relative abundance concerned Actinobac-
teria in CC and CV; Proteobacteria, Tenericutes, Bacteroidetes, and Firmi-
cutes in all groups. In water, between T0 and T1, the significant changes
were observed for Bacteroidetes in Control; Proteobacteria in the CV; Fir-
micutes and Tenericutes in all groups. However, between T1 and T3, the
significant changes concerned Proteobacteria and Tenericutes in CV, and
Firmicutes in all groups. This table only summarized significant taxa vari-
ation with multiple test corrections (Benjamini-Hochberg p-value BH <
0.05) performed on significant Wilcoxon rank-sum test.

Additional file 6: Table S6. This table summarises the variation of the
goodness of fit (R2) to the neutral model, the percentage of neutral and
non-neutral OTUs through different abundance cut-offs in the different
treatment groups of host and water microbial communities at times T1
and T3.

Additional file 7: Figure S1. Box plots of alpha-diversity variations over
time and between treatments in the host and water microbial communi-
ties. The boxplots of richness and evenness variations showed different
trends between treatments and Control. In the gut, the alpha-diversity
showed the same tendency in all groups, except at time T3. In the skin,
the evenness at T1 was higher in Cadmium treatments compared to
Control while the opposite produced for richness at T3. In water, the
evenness and richness were intermediate in the Control group compared
to variable and constant Cadmium selection treatments, except for the
evenness which was the highest in the Control group at T1. Constant
Cadmium regime (CC) is in orange, variable Cadmium regime (CV) is in
Yellow, and Control (Ctrl) is in green.

Additional file 8: Figure S2. Heatmaps of significant taxonomic
variation at the phylum level. This figure includes three heatmaps
representing significant overtime changes of taxonomic composition at
the phylum level in the gut (2a.), skin (2b.) and water (2c.). The
hierarchical clustering of the relative abundance of phyla which
significantly changed over time was performed using Ward’s method and
Bray–Curtis dissimilarity distance. Vegan package and heatmap () function
in R were used to produce these heatmaps.
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Additional file 9: Figure S3. Heatmaps of significant taxonomic
variation at the genus level. This figure indicates with three heatmaps the
significant overtime changes of taxonomic composition at the genus
Level in GMC (Gut Microbial Community) (2a.), SMC (Skin Microbial
Community) (2b.) and WMC (Water Microbial Community) (2c.). The
hierarchical clustering of the relative abundance of phyla, which
significantly changed over time was performed using Ward’s method and
Bray–Curtis dissimilarity distance. Vegan package and heatmap () function
in R were used to produce these heatmaps.

Additional file 10: Figure S4. Phylogenetic divergence at the
community-level in the water microbiome. NMDS (non-metric Multi-
Dimensional Scaling) plot of generalized Unifrac distances showing the
distribution of the water samples based on the phylogenetic content of
their microbiota. The plot shows a significant separation of sample
groups according to treatment (see in Supplementary Table 5-b, p-values
of the PERMANOVA test indicating the significance of group separations)
at each time point, but treatment samples are closer to each other than
the Control group at T1 and T3.

Additional file 11: Figure S5. Boxplots of Bacteroidetes variation over
time and between treatments. At T0, the relative abundance of
Bacteroidetes was significantly lower in the skin compared to the water
and the gut microbial communities. However, at T1, Bacteroidetes
abundance was significantly higher (Wilcoxon ‘s P-value < 0.05) in
the skin microbial communities only in treatment groups (CC and CV),
while in the Ctrl group they showed any significant variation.

Additional file 12: Figure S6. Water and host-microbial interactions
network over time and between communities. This figure summarises
the dynamic of interactions of water with the host microbiome networks.
Each node size in the network is proportional to the average of the OTUs
relative abundance in all samples. These networks are based on signifi-
cant Spearman coefficients and were constructed using R scripts and
Cytoscape software.

Additional file 13: Figure S7. Statistical analysis of the closeness
centrality in the water and host-microbiome networks. The comparison
of centrality assessed with nodes closeness centrality and represented
with violin plots indicate that the average of connections is significantly
higher in the skin compared to the water and gut microbiomes in all
treatments at T0 before disturbance. However, at T1 the centrality of
node converged (which means not significantly different) between the
water and skin microbiome for cadmium-treated groups. At T3, the cen-
trality of node converged between the gut and skin microbiome in the
control group. The average of nodes’ degree computed with Network
Analyzer was compared using the Kruskal-Wallis test followed by
Benjamini-Hochberg test. The value of 0.05 is the threshold of B-H p-
value significance.

Additional file 14: Figure S8. Skin microbiome networks built with
SPIEC method. The SPIEC-EASI (SParse Inverse Covariance Estimation for
Ecological Association Inference) method [55] implemented in R was
applied using Meinshausen-Buhlmann’s neighbourhood selection (MB)
method to estimate the inverse covariance matrix. The OTUs having low
frequency occurrence (occurrence <=3) were dummied in one synthetic
OTUs (black node). Red and grey edges represent negative and positive
regression coefficients of the inverse covariance matrix. The node size in
the network is proportional to the average of an OTU relative abundance
in all samples. These networks were visualized using Cytoscape software.

Additional file 15: Figure S9. Distribution of neutrality versus
abundance cut-off and goodness of fit. This figure shows the variation of
neutral OTUs percentage (Y-axis) and goodness of fit predicted by NLS
models using 12 cut-offs thresholds of relative abundance percentages
(gg facet panels) in the entire metacommunity at T1 and T3.

Additional file 16: Supplementary file 1.

Additional file 17: Supplementary file 2.

Additional file 18: Supplementary file 3.
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