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Ruminal resistome of dairy cattle is
individualized and the resistotypes are
associated with milking traits
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Abstract

Background: Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to
high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome
carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment
through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The
occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli
(e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the
host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the
ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing.

Results: The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance
to tetracycline being the most predominant. The ARG-containing contigs were assigned to bacterial taxonomy, and
the majority of highly abundant bacterial genera were resistant to at least one antimicrobial, while the abundances
of ARG-containing bacterial genera showed distinct variations. Although the ruminal resistome is not co-varied with
host feed intake, it could be potentially linked to milk protein yield in dairy cows. Results showed that host feed
intake did not affect the alpha or beta diversity of the ruminal resistome or the abundances of ARGs, while the
Shannon index (R2 = 0.63, P < 0.01) and richness (R2 = 0.67, P < 0.01) of the ruminal resistome were highly correlated
with milk protein yield. A total of 128 significantly different ARGs (FDR < 0.05) were identified in the high- and low-
milk protein yield dairy cows. We found four ruminal resistotypes that are driven by specific ARGs and associated
with milk protein yield. Particularly, cows with low milk protein yield are classified into the same ruminal resistotype
and featured by high-abundance ARGs, including mfd and sav1866.

Conclusions: The current study uncovered the prevalence of ARGs in the rumen of a cohort of lactating dairy
cows. The ruminal resistome is not co-varied with host feed intake, while it could be potentially linked to milk
protein yield in dairy cows. Our results provide fundamental knowledge on the prevalence, mechanisms and
impact factors of antimicrobial resistance in dairy cattle and are important for both the dairy industry and other
food animal antimicrobial resistance control strategies.
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Background
Antimicrobial resistance (AMR) is a major public health
challenge and increases morbidity and mortality in
humans and food-producing animals [1–3]. Both harm-
less and beneficial bacteria act as reservoirs of antimicro-
bial resistance genes (ARGs) [4, 5], and the ARGs can be
transferred within the microbial community via the
mechanism of horizontal gene transfer [6, 7]. Likewise,
ARGs in livestock animals can be transmitted to humans
through the food chain (e.g., dairy milk), and can enter
the water and soil through runoff from manure [8, 9].
Therefore, investigating the ARGs in livestock animals is
of great importance to address the issues of livestock in-
dustry sustainability and the public health concern of
AMR. In ruminants, it has been widely reported that
fecal shedding is a common route for AMR transmission
in agriculture, with the microbes in feces representing
reservoirs of ARGs [9–13] . Recent studies also indicated
that the rumen microbiome carries a large number of
ARGs as well, which may disseminate to the environ-
ment through saliva or the flow of rumen microbial bio-
mass to the hindgut [14].
Previous studies have demonstrated that the microbes

in the rumen and hindgut of cattle are reservoirs of
ARGs [9–12], and the majority of studies focused on the
impact of antimicrobial (therapeutic or subtherapeutic)
administration. The effects of diet on the ARGs in the
feces [13] and rumen [14] of antimicrobial-free cattle
have been reported recently, and the results indicate that
diet-driven dynamic changes of the microbiome could
potentially modify the microbial resistome (the collection
of all detected ARGs). However, the understanding of host
effects (for instance, feed intake) on the microbial resis-
tome in ruminants is still limited. Here, we speculated that
the host effect of feed intake could be an important im-
pact factor influencing the rumen resistome.
Our previous studies have revealed that the rumen

microbiome is largely individualized and contributes to
personalized milking traits of dairy cattle [15, 16]. Based
on the fact that microbial ARGs are mainly structured
by bacterial phylogeny [17, 18], it was speculated that ru-
minal ARGs could also be individualized in cattle with
varied production. Inspired by the concept of enterotype
in human studies (describing the distinct gut microbial
composition types which are relevant in host pheno-
types) [19], we speculated that animals also could be
classified based on their ruminal resistome (defined as
ruminal resistotype) and the resistotypes could be asso-
ciated with cattle phenotypes.
To uncover the above knowledge gaps, we designed

two studies that included a total of 49 lactating dairy
cows, aiming to test the hypotheses that 1) the resistome
is driven by host feed intake and 2) animals with differ-
ent milking traits have distinctive ruminal ARG profiles.

Rumen digesta samples from 33 and 16 lactating dairy
cows were collected and employed in studies 1 and 2, re-
spectively, to test the above hypotheses. Metagenomic
sequencing of these samples was conducted to
characterize the profiles of the ruminal resistome. We
further explored the effects of feed intake on ARG pro-
files and associations between the ruminal resistome and
milking traits. The current research provides a funda-
mental understanding of the ARGs in the rumen of dairy
cattle and reveals the potential relationships between mi-
crobial ARGs and host production.

Results and discussion
Profiles and mechanisms of the ruminal resistome in
lactating dairy cows
Shotgun metagenomic sequencing generated a total of 2,
751,185,494 reads from rumen samples of 49 dairy cows
(Supplementary Table S1). After quality control and re-
moving host genes, 34,039,290 contigs were assembled.
We first characterized the microbial profile, with 33,226,
582 contigs annotated to RefSeq database. The rumen
microbiome consisted of 93.38 ± 6.54% (mean ± standard
deviation) bacteria, 4.58 ± 6.53% eukaryote, 1.35 ± 0.72%
archaea, and 0.47 ± 0.34% viruses (Supplementary
Fig. 1A). The dominant bacterial phyla included Bacter-
oidetes (53.98 ± 5.65%), Firmicutes (30.98 ± 6.15%), Pro-
teobacteria (6.09 ± 4.65%), Actinobacteria (1.31 ± 0.84%),
and Spirochaetes (0.52 ± 0.20%) (Supplementary Fig. 1B).
A total of 19,674,072 contigs were annotated to the

Comprehensive Antimicrobial Resistance Database
(CARD) database, and 343 ARGs were identified. The
ARGs consisted of 68.6 ± 1.29% antimicrobial resistance
genes (defined as AR in CARD), 18.8% ± 1.14% anti-
microbial sensitive genes (AS), 11.5 ± 1.29% antimicro-
bial target genes (AT), and 1.13 ± 0.22% antimicrobial
biosynthesis genes (ABS) were identified using CARD
(Fig. 1a). The ruminal resistome of lactating dairy cows
in this study was predicted to confer resistance to 26 dif-
ferent classes of antimicrobials (Fig. 1b). Previous studies
of bovine microbial resistome mainly focused on fecal
microbiota and found that feces serve as the primary
route of AMR contamination from cattle to the environ-
ment [9, 13]. Our results, together with a previous study
[14], indicate that the rumen microbiome also carries a
large number of genes that confer resistance to different
antimicrobial classes in cattle, and these genes may dis-
seminate to the environment through animal saliva or to
the feces through the gastrointestinal tract [20]. We
found that genes conferring resistance to tetracycline in
the rumen were the most abundant (18%) (Fig. 1b), and
this result is consistent with previous studies [14, 21]. It
has been demonstrated that genes carrying tetracycline
resistance are present after cattle are born and increase
during nursing, although the animals have been
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antibiotic-free since birth [13]. The high prevalence of
such resistance genes in antimicrobial-free animals may
be due to the presence of commensal bacteria naturally
carrying ARGs and being part of core bacteria in
antimicrobial-free animals after the long-term use of
subtherapeutic doses of tetracycline in dairy veterinary
practice [22]. Additionally, a high background of AMR

in the environment, such as basin water, manured agri-
cultural soil and urban sewage [9], could also influence
the ruminant overall resistome.
The mechanisms of rumen antimicrobial resistance to

different classes of antimicrobials were then identified
(Fig. 2). In our ruminal resistome dataset, approximately
45% of the ARGs were linked to the mechanism of

Fig. 1 Composition of ruminal resistome in dairy cows. a Abundances of ARGs (antimicrobial resistance genes) per branch. ABS, Antimicrobial
Biosynthesis; AT, Antimicrobial Target; AS, Antimicrobial Sensitive; AR, Antimicrobial Resistance. b Ruminal resistome composition summarized at
the antimicrobial-class level
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antimicrobial efflux, conferring resistance to elfamycin
and streptogramin. Among these sub-terms conferring
resistance by antimicrobial efflux, 40% were subunit of
efflux pump conferring antibiotic resistance, 38.26%
were resistance-nodulation-cell division (RND) antibiotic
efflux pump, 10.43% were ATP-binding cassette (ABC)
antibiotic efflux pump, 7.83% were major facilitator
superfamily (MFS) antibiotic efflux pump, and 3.48%
were multidrug and toxic compound extrusion (MATE)
transporter (Supplementary Table S2). Fifteen percent of
the ARGs conferred resistance by encoding antimicro-
bial target protection proteins, including mostly tetracyc-
line resistance genes. Eight percent of the ARGs were
involved in the mechanism of molecular bypass, includ-
ing most glycopeptide antimicrobial resistance genes.
Approximately 3% of the ARGs alter cell wall charge to
confer resistance, and all these genes are associated with
polymyxin resistance. Another 3% of the ARGs encoded
antibiotic inactivation enzymes (Fig. 2). In addition, 22%
of ARGs were considered to act through other mecha-
nisms, since no mechanistic information of these ARGs
was identified based on CARD.
The mechanism profiles of antimicrobial resistance

identified in the current study revealed that antimicro-
bial efflux was the major route for the transmission of
AMR in rumen microbiome. However, some mecha-
nisms of AMR are very complex, making it difficult to
obtain such information from the current antimicrobial
resistance databases. For instance, some resistance oc-
curs from epistatic relationships between multiple genes
[23], many resistances can arise via overexpression of
structural genes such as genes encoding efflux pumps,
and some ARGs may not always be expressed [24].
Therefore, it is still challenging to accurately reveal the
mechanisms of the ruminal resistome by predicting
phenotypic antimicrobial resistance from genotypic anti-
microbial resistance genes [7]. Identifying and verifying

such resistance mechanisms may require further mRNA-
level and protein-level measurements.

Assigning the ARG-containing contigs to bacterial
taxonomy
The ARG-containing contigs of these 49 samples were
assigned to bacterial taxonomy to predict the bacterial
origin of the observed ARGs, with 19,204,342 ARG-
containing contigs assigned to bacteria (97.61% of con-
tigs harbouring ARGs, Supplementary Table S1). The
ARG-containing bacteria belonged to 7 phyla, account-
ing for 99% of the total ARG abundances (Fig. 3a). Taxa
of the phylum Firmicutes (relative abundance of 42.4 ±
7.71%, mean ± standard deviation) showed the largest
proportion of bacteria harbouring ARGs, with most of
the ARGs detected in the families Lachnospiraceae
(13.9 ± 2.34%), Ruminococcaceae (6.13 ± 2.21%), and
Clostridiaceae (5.53 ± 1.12%). The ARG-containing taxa
of the phylum Bacteroidetes (41.9 ± 7.03%) mainly
belonged to the families Prevotellaceae (32.6 ± 6.82%)
and Bacteroidaceae (6.39 ± 1.33%). The ARG-containing
taxa of the phylum Proteobacteria (5.82 ± 5.01%) mainly
belonged to the families Succinivibrionaceae (2.17 ±
1.92%), Aeromonadaceae (1.23 ± 1.14%), and Enterobac-
teriaceae (0.77 ± 0.95%) (Fig. 3a). At the genus level, the
predominant ARG-containing bacterial genera (relative
abundance > 1% and existed in > 50% of all the samples)
accounted for 74.7% of all ARG abundances, with Prevo-
tella (30.6 ± 6.41%), Bacteroides (6.37 ± 13.36%), unclassi-
fied Lachnospiraceae (5.50 ± 1.23%), Clostridium (5.20 ±
1.18%), and unclassified bacteria (5.23 ± 0.95%) being the
most abundant. Large inter-animal variations in the
abundances of ARG-predicted genera were observed,
with the coefficient of variances (CVs) ranging from 20.3
to 210% (Table 1), indicating that the ARGs in the
rumen microbiome are individualized.

Fig. 2 Antimicrobial resistance mechanisms in the rumen microbiome. The rumen microbiome in dairy cows exhibited broad antimicrobial
resistance mechanisms classified in 7 categories. The classes of antimicrobials observed in the category of each mechanism are presented
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Several of the predominant bacterial genera predicted
to carry ARGs, including Prevotella, Clostridium and
Ruminococcus [21], have been considered the core bac-
teria in the rumen of dairy cows and other ruminant
species [25–28]. Prevotella, which utilizes starch and
proteins to produce succinate and acetate, is commonly
considered the most predominant bacterial genus in the
rumen of adult dairy cows [29]. Our previous study re-
ported that Prevotella positively contributed to volatile
fatty acid production in the rumen and milk protein
yield [16], and other studies have also reported that the
OTUs belonging to Prevotella were associated with the
feed efficiency [30] and milk protein yield [31] of dairy
cows. Ruminococcus plays roles in breaking down fibrous
plants and producing acetate and has been identified as
the second predominant bacterium in dairy cows fed a
corn-based high-grain diet [27]. Clostridium is a cellulo-
lytic, proteolytic and amylolytic bacterium [32]; Clostrid-
ium has been reported to be more abundant in the
rumen of cows with lower levels of milk protein yield
[16] and negatively correlated with milk protein content
[31]. The identification of these core bacteria as predom-
inant ruminal ARG reservoirs suggests the high presence
of ARGs in the rumen ecological niches of dairy cows.

These predominant microbial ARG reservoirs identified
in the rumen are bacterial members that play vital roles
in feed fermentation and volatile fatty acid production,
which subsequently determine or largely affect host
phenotypes. This suggests that when we consider im-
provement strategies for animal production performance
that involve manipulating the rumen microbiome, the
presence of ruminal ARGs should be taken into
consideration.
When the ARG distributions in different bacterial

phyla were compared based on the distributions of the
top 20 most abundant ARGs in the top 10 most abundant
phyla, the most dominant ARGs (counts per million reads
[CPM] > 500 in over 60% of the samples), including mfd,
sav1866, macB, and alaS, were distributed in the majority
of the abundant bacterial phyla (Fig. 3b). mfd encodes the
transcription-repair-coupling factor and confers resistance
to fluoroquinolone antimicrobials [33]. The sav1866 and
macB genes confer resistance through the mechanism of
the efflux pump, with sav1866 encoding a multidrug
export ATP-binding/permease protein [34] and macB
encoding a macrolide export ATP-binding/permease pro-
tein, which is part of the efflux system MacAB-TolC
pump [35]. The alaS gene encodes the alanine-tRNA

Fig. 3 The predicted bacterial taxa of the ruminal resistome and the relative abundances of related resistance genes. a Composition of observed
bacterial taxa predicted by the ruminal resistome summarized at the phylum and family levels. b Distributions of ARGs in the phyla of predicted
rumen bacteria. The top 10 phyla are displayed, with the remaining bacterial phyla included in the “others” category. The distributions of the
ARGs are presented as coloured boxes, with the top 20 resistance genes listed. ARGs: antimicrobial resistance genes

Xue et al. Animal Microbiome            (2021) 3:18 Page 5 of 17



ligase [36] and confers resistance to aminocoumarin. The
high abundances of these ARGs in the current study indi-
cate the prevalence of these ARGs in the ruminal micro-
biome of lactating dairy cows without recent antimicrobial
usage (animals used in this study received no therapeutic
or prophylactic antimicrobial treatment since the first day
of lactation).
Although most of the highly abundant bacterial phyla

were predicted to confer resistance to at least one

antimicrobial, the resistance between different bacterial
phyla showed high variation, and a higher prevalence of
ARGs was identified in the predominant phyla (Fig. 3b).
For example, 20 and 19 out of the top 20 most abundant
ARGs were identified in bacterial taxa belonging to Fir-
micutes and Bacteroidetes, while less than 5 out of the
top 20 most abundant ARGs were identified in Fusobac-
teria and Chlamydiae. A previous study that analysed
rumen bacterial and archaeal genomes also revealed that

Table 1 Relative abundances of predominant ARG-predicted bacterial genera

Genera Mean Standard deviation Coefficient of variances

Prevotella 30.57% 6.41% 21.62%

Bacteroides 6.37% 1.36% 210.06%

unclassified (f) Lachnospiraceae 5.50% 1.23% 24.55%

Clostridium 5.20% 1.18% 23.63%

unclassified (d) Bacteria 5.23% 0.95% 20.31%

unclassified (p) Firmicutes 4.39% 1.34% 28.67%

Ruminococcus 3.89% 1.58% 37.43%

Butyrivibrio 3.41% 0.63% 34.00%

Eubacterium 3.16% 0.97% 24.75%

Bifidobacterium 1.63% 0.74% 67.31%

Selenomonas 1.56% 0.50% 43.23%

unclassified (o) Clostridiales 1.23% 0.40% 39.14%

Roseburia 1.11% 0.31% 33.87%

Paraprevotella 1.01% 0.31% 32.66%

Phascolarctobacterium 0.91% 0.36% 35.85%

Alistipes 0.99% 0.32% 34.40%

unclassified (f) Ruminococcaceae 0.91% 0.26% 32.14%

Blautia 0.87% 0.23% 28.19%

Aeromonas 0.91% 1.04% 81.33%

Ruminobacter 0.87% 0.74% 100.63%

Faecalibacterium 0.75% 0.29% 69.74%

Lactobacillus 0.68% 0.17% 34.77%

Oribacterium 0.62% 0.22% 31.28%

Succinatimonas 0.62% 0.62% 73.60%

Olsenella 0.47% 0.43% 106.08%

Mycoplasma 0.52% 0.20% 70.25%

Campylobacter 0.54% 0.20% 37.48%

Pseudobutyrivibrio 0.47% 0.17% 38.91%

Treponema 0.45% 0.27% 52.51%

Tolumonas 0.42% 0.37% 78.35%

unclassified (o) Bacteroidales 0.32% 0.24% 91.34%

Kandleria 0.27% 0.43% 134.62%

Dialister 0.27% 0.36% 162.23%

Sharpea 0.26% 0.28% 125.98%

Desulfosporosinus 0.23% 0.19% 103.78%

others 13.39% 1.87% 50.35%

Xue et al. Animal Microbiome            (2021) 3:18 Page 6 of 17



ARGs were more prevalent among members of the phyla
Firmicutes, Proteobacteria, Bacteroidetes, and Actinobac-
teria in different ruminant species [21]. In ovine, rumi-
nal ARGs were identified mostly within the phyla
Firmicutes and Proteobacteria [37]. These previous
works together with the current study indicate that al-
though ARGs are widely distributed across rumen bac-
terial taxa, resistance to specific antimicrobials is more
prevalent in the above bacterial phyla.

Effect of host feed intake on ruminal resistome
We then characterized whether the ruminal bacteriome
and resistome are affected by the host physiological ef-
fect of feed intake. Cows with the highest dry matter in-
take (DMI, n = 10) and lowest DMI (n = 10) in study 1
were selected to detect whether the host feed intake
could affect the ruminal resistome. Power calculation re-
vealed that the sample size of 10 enabled 99% power and
a type I error of 5%, based on a t-test of the DMI. The
bacteriome was compared between high and low DMI
groups based on Beta diversity and relative abundances,
and barely difference was found between the two DMI
groups (Supplementary Fig. 2).
The correlation analysis showed no significant correla-

tions between the alpha diversity (Shannon and Chao1
indices) of ARGs and DMI (P > 0.80, Fig. 4a and b). The
redundancy analysis (RDA) plot illustrated that the ru-
minal resistome in cows with different DMIs was not
separable, and the relationship between the abundant
rumen ARGs and host feed intake was close to zero (Fig.
4c). The heatmap and the clustering based on the abun-
dances of the 20 most dominant ARGs revealed no clus-
ters between different feed intake groups (Fig. 4d). The
abundance of each ARG was also compared between the
two DMI groups, while no differential ARG was ob-
served (permutational multivariate ANOVA [PERM
ANOVA], P = 0.90) (Supplementary Table S3).
Many factors can affect the rumen resistome, for ex-

ample, previous microbial ARG studies in cattle using
culture-based methods mainly focused on the influence
of antimicrobial administration (therapeutic or subthera-
peutic administration) on microbial ARGs in feces [38].
Recent studies using sequencing-based methods re-
ported the effect of diet on the microbial resistome in
feces [13] and rumen [14] of antimicrobial-free cattle,
suggesting that the diet-driven dynamic changes of the
microbiome could potentially modify the gastrointestinal
resistome. Here, we considered one of the important
host physiological effects, feed intake, on rumen micro-
bial ARGs. It is known that feed intake affects microbial
growth due to the differential amounts of available sub-
strates for the growth of microbiota [39] and the varied
rumen passage rate [40–42]. However, our results
showed that both the ruminal bacteriome and resistome

did not co-vary with host feed intake. The primary effect
on the microbial composition and ARGs was diet ingre-
dients [13, 14] rather than the effect of feed intake or
breed [14], suggesting that the external stimulus may be
a major cause of changes in the gastrointestinal resis-
tome. Although the host effect of feed intake may not be
the major cause of resistome changes, other host effects,
such as genetics, which has been confirmed to regulate
the rumen microbiome [43–45], should be considered
and linked to the microbial resistome in future studies.

The relationship between the ruminal resistome and
milking traits
We then investigated whether the ruminal resistome dif-
fers between cows with different milking traits, which
were fed the same corn-based high-grain diet and under
the same management condition. The ruminal resistome
of 16 lactating dairy cows in study 2 was separated into
two significantly separable clusters based on different
milk protein contents (PERMANOVA P < 0.01, Supple-
mentary Fig. 3A) and milk protein yield (PERMANOVA
P < 0.01, Supplementary Fig. 3B), while no clear cluster
based on milk fat contents (PERMANOVA P = 0.23) or
lactose contents (PERMANOVA P = 0.35) was observed
(Supplementary Fig. 3C and D). Significantly positive
correlations between Shannon index (R2 = 0.63, P < 0.01)
and richness (Chao1 index, R2 = 0.67, P < 0.01) of the ru-
minal resistome and milk protein yield were observed
(Fig. 4e and f).
Based on the above results, the 16-cow dataset was di-

vided into two groups according to milk protein yield,
including 7 cows with high milk protein yield (HH, milk
protein yield > 1.11 kg/d) and 9 cows with low milk pro-
tein yield (LL, milk protein yield < 0.84 kg/d). Power cal-
culations revealed that the sample size enabled 88%
power and a type I error of 5%, based on a t-test of milk
protein yield. The comparison of rumen bacteriome be-
tween HH and LL groups showed clear clustering based
on Beta diversity, together with significant differences in
abundant bacterial species (Supplementary Fig.4).
The distributions of the predominant predicted ARG-

carrying bacterial phyla and genera in the ruminal resis-
tome of each group (top 20 ARGs represented) showed
distinguishable patterns between the HH and LL groups
(Fig. 5 and Supplementary Table S4). The Bray-Curtis
dissimilarity-based clustering analysis showed a trend of
separation between the cows with different milk protein
yields (Fig. 6a), with the RDA revealing that the 7 most
abundant ARGs (indicated by the green arrows) posi-
tively contributed to the separation and were positively
correlated with the milk protein content and yield (indi-
cated by the red arrows, Fig. 6b). The abundances of
ARGs in the HH and LL groups were then compared;
128 ARGs (accounting for 44.76% of the total ARG
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number) had significantly different abundances (FDR <
0.05, PERMANOVA P < 0.01). These significantly differ-
ent ARGs conferred resistance to 13 classes of antimi-
crobials (Fig. 6c). The most abundant ARG, mfd,
conferring resistance to fluoroquinolone, was signifi-
cantly higher in the HH group (FDR = 0.008) (Supple-
mentary Table S5). The rumen microbiome of the HH
cows also harboured higher abundances of genes confer-
ring resistance to polymyxin, including pmrE, pmrF,
pmrC, and pmrA (FDR < 0.05). The rumen microbiome
of the LL cows had more enriched genes conferring re-
sistance to glycopeptide antimicrobials, elfamycin, and
aminoglycoside antimicrobials (Fig. 6c). Notably, among
the top 20 differential ARGs, 17 had significantly higher
abundances in the rumen of the HH cows, while only 3
low-abundance ARGs were enriched in the rumen of the
LL cows (Supplementary Table S5). Different ruminal
ARG patterns between the cows with different milk

protein yields suggest that the improvements in produc-
tion could have a negative impact on the ruminal AMR,
although no antimicrobial treatment was used for pro-
moting production.
Our current study together with previous studies [15,

16, 46] showed that both the rumen bacteria compos-
itional patterns and functional patterns (Supplementary
Fig. 5) were different between the HH and LL cows, and
several dominant bacteria contributed to host milk pro-
tein yield. The results in the current study showing dif-
ferent microbial ARG patterns make us speculate that
these dominant bacteria may co-occur with specific
ARGs. For example, our previous study reported that
the abundance of Prevotella was significantly higher in
the rumen of HH cows and that Prevotella positively
contributed to volatile fatty acids and milk protein yield
[16]. This taxon was also an important ARG reservoir
which include the most predominant ARG, mfd, in the

(See figure on previous page.)
Fig. 4 Ruminal resistome profiles of cows with different feed intake and cows with different milking traits. Spearman’s rank correlations between
Shannon index (a) and Chao 1 richness (b) of ARGs and dry matter intake. c Biplot of the redundancy analysis showed relationships between
ARGs and dry matter intake. The top 10 most abundant ARGs were used in this analysis. HDMI, cows with the highest dry matter intake (n = 10);
LDMI, cows with the lowest dry matter intake (n = 10). d Heatmap of the abundances of the top 20 ARGs in each sample. The abundances (CPM,
counts per million) of ARGs were log10- transformed. The cows were clustered and coloured by different groups (green, high intake; red, low
intake). The animals used in the above analysis were all selected from study 1. Spearman’s rank correlations between Shannon index (e) and
Chao 1 richness (f) of ARGs and milk protein yield. The animals used were selected from study 2. R2 = correlation coefficient. ARGs: antimicrobial
resistance genes

Fig. 5 Distributions of ARGs annotated to bacterial taxa in the rumen of cows with different milk protein yield. The proportion of ARG contigs
annotated to the top 10 most abundant bacterial phyla (a) and top 20 most abundant bacterial genera (b) are shown in the bar plots. ARGs:
antimicrobial resistance genes
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current study. The higher prevalence of Prevotella and
mfd in the rumen of HH cows suggests the potential co-
occurrence between this bacterial taxon and ARG, which
was confirmed by the co-occurrence analysis of bacterial
genera and ARGs (Fig. 7). The co-occurrence analysis
also revealed positive relationships between Selenomonas
and several ARGs, including mfd, patB, patA, pbp1A,
pmrE, evgS, and vanTG (Fig. 7). The identification of
above potential co-occurrences will provide evidence for
balancing resistome prevention and microbiome ma-
nipulation for lower AMR and better production in dairy
cows.

The ruminal resistotypes were associated with milk
protein yield
Inspired by the concept of enterotype [47] and human
intestinal resistotypes [48], we investigated the classifica-
tion of animals based on their ruminal resistome and de-
fined such classification as the ruminal resistotype. In
our study, the 16 dairy cows were classified into 4 sub-
populations based on the ruminal resistome (Fig. 8a),
which was defined as the ruminal resistotype in the
current study. Interestingly, nearly all the LL resistomes

(8 out of 9) were classified into Type4 and were dis-
tinctly separated from the other three resistotypes, with
the predominant ARGs in Type4 animals being mfd
(5.84%) and sav1866 (5.45%). The LL cows were more
likely to be distinguished from a cohort of animals, po-
tentially due to their distinctive pattern of predominant
ARGs (Supplementary Table S6). The other three resis-
totypes (Type1, 3 animals; Type2, 4 animals; and Type3,
1 animal) were observed in all HH cows and one LL cow
(Fig. 8a).
To detect the key ARG drivers for different resisto-

types, we performed LEfSe analysis on the ARGs based
on the classification of four resistotypes. Significantly
different ARGs among the four resistotypes were ob-
served (Fig. 8b). The key ARG drivers were only found
to be significantly enriched (LDA > 2) in Type1 (25
ARGs) and Type4 (13 ARGs), and such drivers were not
found to be enriched in Type2 and Type3 (Fig. 8b). The
heatmap revealed differential patterns of these ARG
abundances and separations among the 4 resistotypes
(Fig. 8b). Notably, 23 of the 38 ARG drivers were also
found to be significantly different in cows with different
milk protein yield (Fig. 8b).

(See figure on previous page.)
Fig. 6 Distinguishable ruminal resistome between high- and low-milk protein yield dairy cows. a The clustering of ARGs obtained from dairy
cows with high and low milk protein yield based on Bray-Curtis dissimilarity. b Biplot of the redundancy analysis showed relationships between
ARGs and milk protein content (MP), milk yield (MY), and milk protein yield (MPY). The top 10 most abundant ARGs were used in this analysis and
are indicated by green arrows. c Significantly different ARGs categorized by antimicrobial classes. Each antimicrobial class was represented by an
individual colour in the external circle of the plot. The numbers of significantly higher ARGs in each group belonging to each antimicrobial class
are shown in the plot. ARGs: antimicrobial resistance genes

Fig. 7 Co-occurrence network of abundant bacterial genera and ARGs. Abundant bacterial genera (top 10) and ARGs (top 20) of animals in study
2 were selected and used in the co-occurrence analysis. Only strong positive relationships (coefficient > 0.5 and P < 0.05) were displayed in
the network
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The most predominant ARGs (including four ARGs
with CPM > 100) were considered the most contributing
drivers to the different resistotypes. The most abundant
gene, mfd (mutation frequency decline), encodes a
transcription-repair coupling factor involved in strand-
specific DNA repair, conferring resistance to fluoro-
quinolone antimicrobials [33]. In addition to the most
abundant mfd, other predominant ARGs, including
pbp1A, vanTG, and iles, were also considered the most
important critical drivers for different resistotypes. It has
been demonstrated that PBP1A (penicillin-binding pro-
tein in Streptococcus pneumoniae isolates) possesses
multiple substitutions that are highly associated with a
reduced affinity for penicillin [49]. The vanTG gene (a
vanT variant) confers resistance to vancomycin and re-
sulted from the replacement of the target of peptidogly-
can precursors [50]. The Bifidobacteria intrinsic iles
gene (encoding isoleucyl-tRNA synthetase) confers re-
sistance to mupirocin due to the key amino acid residues
of the iles protein and is crucial for conferring a mupiro-
cin resistance phenotype to Bifidobacteria [51]. We as-
sumed that the above ARG-driven variations in animal
production in the current study could be attributed to
the variations in the microbial community, as microbial
AMR is mainly structured by the bacterial community
[18]. This possibility is supported by the current study
(Fig. 5) and our previous studies, showing that the bac-
terial richness and the relative abundances of several
bacterial taxa significantly differed between cows with
different milk protein yield [15, 16]. The ARG drivers re-
vealed in the current study suggest that these key ARGs
may potentially co-vary with the microbial biomarkers
identified in the rumen of cows with different milk qual-
ity, and further study is needed to confirm their relation-
ships and underlying mechanism.
In the current study, the dairy cows were classified

into different resistotypes which were associated with in-
dividualized phenotype of milk protein yield (study 2) ra-
ther than DMI (study 1, Supplementary Fig. 6). A
human study also reported the clustering of subjects
from a cohort of 663 people into 6 resistotypes, and
these resistotypes were connected to enterotypes [48].
However, the causal effects behind such classification
still need to be further explored. Due to the fact that dif-
ferent parity in our study could affect lactation perform-
ance and also chances to receive therapeutic treatment,
the impact factor of parity should be considered in

future study validating the association between resisto-
types and milking traits. Also, although the power calcu-
lation revealed that our sample size in study 2 enables
87.5% power, the sample size of 16 is still relatively lim-
ited, indicating that future study should include a larger
number of animals. Moreover, many factors affect the
rumen microbiome, including diet [52], genetics [43],
age [53], and lactation stage [15], indicating that the ru-
minal resistome could also be affected by these factors.
The ruminal resistome composition and the resistotypes
identified in the current study provide information about
the ruminal resistome of mid-lactating Holstein dairy
cows that were fed a corn-based high-grain diet. Future
studies that examine the effects of other impact factors
on ruminal resistome are required to identify whether
ruminal resistotypes differ between breed types, lactation
stage, or diet.
Majority of previous studies investigating the ARGs in

rumen and hindgut have focused on the impact of anti-
microbial (therapeutic or subtherapeutic) administration
rather than focusing on the ARGs in antimicrobial-free
animals. In our study, although the animals were free of
antimicrobials during the experimental period and re-
ceived no therapeutic or prophylactic antimicrobial
treatment since the first day of lactation, this does not
mean that animals in our study were not exposed to an-
timicrobials since birth. Additionally, the detection of
ARGs at the DNA level detected in our study may not
accurately reveal AMR phenotypes, since DNA can be
released from dead microbes, and resistance can occur
via overexpression of normal genes [7]. These suggest
that transcriptional measurements focusing on abso-
lutely antimicrobial-free animals are required for further
comprehensive detection and validation.

Conclusions
The current study provides insights into ARGs in the
rumen of lactating dairy cows. Although no antimicro-
bials were given to the cattle during the experimental
period in our study, the ruminal resistome conferred re-
sistance to 26 antimicrobial classes, suggesting that the
rumen microbiome serves as a reservoir for a high rich-
ness of AMR. Moreover, the analysis of the host effect
on the ruminal resistome reveals that the resistome is
not driven by the varied feed intake of the host, while
the ruminal resistome compositions were different in
cows with different milk protein yield. The resistomes

(See figure on previous page.)
Fig. 8 Stratification of the ruminal resistome composition in study 2. a The principal coordinate analysis of the ruminal resistome showed four
resistance types (resistotypes) among the 16 dairy cows. b The significantly different ARGs among the four resistotypes tested by LDA effective
size analysis, with LDA > 2 being considered significantly different. Differential ARGs among the four ruminal resistotypes were only found to be
enriched in Type1 and Type4. The heatmap shows the abundances (log10-transformed reads per million) of each differential ARG. * Represents
the ARGs that were also found to be significantly different between high- and low-milk protein yield groups. ARGs: antimicrobial resistance genes
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could be classified into several resistotypes, which were
driven by specific ARGs and associated with milk pro-
tein yield in dairy cows. These results indicate that the
changes in the rumen microbiome composition could
not only affect milking protein yield but also affect the
ruminal resistome. In sum, our study uncovered the
prevalence of ruminal ARGs in the rumen and the host-
ruminal resistome interactions of dairy cows, providing
fundamental knowledge and evidence for interventions
to reduce AMR and regulate ARGs in ruminant
livestock.

Methods
Animals, samples, and DNA extraction
The experimental protocol was approved by the Animal
Care Committee of Zhejiang University (Hangzhou,
China). All the animals used in two studies were free of
antimicrobials during the experimental period and re-
ceived no therapeutic or prophylactic antimicrobial
treatment since the first day of lactation. The animals
within each study were fed the same diet and under the
same management condition. These two studies were
previously designed and revealed that the host effect of
feed intake is a crucial impact factor influencing rumen
microbial metabolism (protein synthesis) and subse-
quently milk protein synthesis (study 1) [54], with indi-
vidualized rumen microbiome playing important roles in
regulating milk protein yield of dairy cow (study 2) [16,
46]. Power calculations revealed that sample sizes in
these two studies enable 87.5% power and a type 1 error
of 5%, based on t test of phenotypic parameters [46, 54].
In study 1, a cohort of mid-lactating Holstein dairy

cows (parity = 2.48 ± 0.62, mean ± standard deviation)
raised on a commercial dairy farm (Hangzhou, China)
were selected for DMI measurements to detect the im-
pact of feed intake on ruminal ARGs. This cohort in-
cluded only healthy animals which were free of
antimicrobials during the experimental period and re-
ceived no therapeutic or prophylactic antimicrobial
treatment since the first day of lactation, with 6 un-
healthy animals treated with antimicrobials during the
experimental period excluded. A total of 33 animals
were finally left for further measurement. The cows were
fed a total mixed ration that was formulated to produce
35 kg of milk per day with 3.25% milk protein as re-
ported previously [54]. The milking traits were not dif-
ferent in animals with different DMIs [54]. The feed
intake data were recorded using automatic weighting
troughs (Roughage Intake Control System, Marknesse,
Netherland), and the DMI was calculated as described
previously [54].
In study 2, another 16 mid-lactating Holstein dairy

cows (parity = 2.94 ± 1.34, mean ± standard deviation)
were selected from a cohort of 374 healthy mid-lactating

Holstein dairy cows raised on another commercial dairy
farm (Hangzhou, China) based on our previous milking
trait measurements to detect whether the resistome is
individualized in cows with different milking traits [46].
In this study, 7 cows with the highest-milk protein yield
(HH, cows with both the highest milk yield and protein
content) and 9 cows with the lowest-milk protein yield
(LL, cows with both the lowest milk yield and protein
content) were selected and used for further analysis.
Milk yield were > 34.5 kg/d for the HH and < 31 kg/d for
the LL cows, and the milk protein content were > 3.20%
for the HH and < 2.90% for the LL cows, respectively.
These cows had different milking traits, including milk
yield, milk protein content, and milk protein yield (milk
yield × milk protein content) [16]. Cows were fed the
same diet with a concentrate-to-forage ratio of 57:43
(dry matter basis) as described previously [55]. Rumen
microbial profile of the 16 dairy cows has been reported
previously, showing that several Prevotella species were
significantly more abundant in the rumen of cows with
higher milk protein yield, while methanogen were sig-
nificantly lower [46].
Rumen digesta contents were sampled using oral

stomach tubes at the same time of the sampling day of
each study [56]. To reduce saliva contamination, we
inserted the oral stomach tubes into the central rumen
and discarded the first 150 mL of rumen fluid during
sampling, and shortened the sampling time as well [56].
Total genomic DNA was extracted from rumen contents
using the repeat bead-beating plus column method [57].
The quality and quantity of DNA were evaluated using a
NanoDrop 2000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE, USA).

Metagenome sequencing and data processing
Metagenome library construction was performed using
TrueSeq DNA PCR-Free Library Prep Kits (Illumina,
San Diego, CA, USA). Metagenome library sequencing
was performed on an Illumina HiSeq 3000 platform
(150 bp paired-end sequencing) at Majorbio Bioinfor-
matics Technology Co., Ltd. (Shanghai, China).
The quality control of each dataset was performed

using Sickle (version 1.33, https://github.com/najoshi/
sickle). The 3′-ends of reads and 5′-ends of reads were
trimmed, and the low-quality bases (quality score < 20),
short reads (< 50 bp), and “N” records were removed.
After quality control, the reads were aligned to the bo-
vine genome (bosTau8 3.7, DOI: https://doi.org/10.
18129/B9.bioc.BSgenome.Btaurus.UCSC.bosTau8) using
BWA v0.7.1 (http://bio-bwa.sourceforge.net) to filter out
host DNA [58]. The filtered reads were then de novo as-
sembled using Megahit v1.1.2 (http://www.l3-bioinfo.
com/products/megahit.html) [59]. The assembled con-
tigs were annotated to open reading frames (ORFs) using
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MetaGene v0.3.38(http://metagene.cb.k.u-tokyo.ac.jp/) [60].
Assembled contigs were pooled, and non-redundancies
were constructed using CD-HIT (95% identity, 90% cover-
age) (http://www.bioinformatics.org/cd-hit/) [61]. Original
sequences were mapped to predicted genes (non-redundan-
cies) to estimate their abundances using SOAPaligner v2.21
(http://soap.genomics.org.cn/) [62].

ARG identification and resistome analysis
Contigs were annotated using DIAMOND v0.8.35
(http://ab.inf.uni-tuebingen.de/software/diamond) against
the CARD Database v3.0.7 (https://card.mcmaster.ca) with
an E value of 1e-5 and 90% coverage to identify the ARGs
[63]. The CARD database provides a list of the antimicro-
bial resistance mechanisms, including a majority of 7 cat-
egories [63], and such information was utilized to identify
the mechanisms of specific ARGs in our dataset. The clas-
sification of ARG classes and resistance mechanisms were
utilized by Krona (https://github.com/marbl/Krona/wiki).
The read counts within each sample were normalized into
CPM for downstream analysis. The alpha diversity indices
were calculated using the normalized read counts of
ARGs. Beta diversity (principal component analysis
[PCA]) using Bray-Curtis dissimilarity and RDA were per-
formed based on the normalized read counts. Cows were
clustered based on the rumen ARGs using the Jensen-
Shannon distance and partitioning ARGund medoid
(PAM) clustering [47]. The optimal number of clusters
was estimated based on the Calinski-Harabasz (CH) index,
and the clustering was represented using the principal co-
ordinate analysis (PCoA) plot.
Taxonomic assessment of rumen microbiota was per-

formed using DIAMOND 0.8.35 against the RefSeq data-
base (http://www.ncbi.nlm.nih.gov/RefSeq/) using the
contigs that harbour ARGs. Taxonomic profiles were
generated at the phylum, family, genus, and species
levels, and the relative abundances were calculated.

Statistical analysis
All statistical analyses were performed in R (https://
www.r-project.org). The DMI in the two groups in study
1 and milking traits in the two groups in study 2 were
compared using the t-test. The PERMANOVA based on
the abundances of the ARGs was performed with 1000
permutations to test the difference in rumen ARGs in
cows with different phenotypes. The ARGs existing in at
least 50% of cows within each group were used for
downstream comparison analysis. The ARGs in different
DMI groups were compared using the Wilcoxon rank-
sum test, with a false discovery rate (FDR) < 0.05 consid-
ered significantly different. The ARGs in cows with
different milk protein yields were compared using the
Wilcoxon rank-sum test and linear discriminant analysis
effect size (LEfSe), and significant differences were

examined by linear discriminant analysis (LDA)
score > 2 and P value < 0.05. The correlation analysis
was performed using Spearman’s rank correlation, and
a P value of Spearman’s coefficient < 0.05 was consid-
ered significant.
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