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meat chicken flocks
Yugal Raj Bindari1, Robert J. Moore2, Thi Thu Hao Van2, Stephen W. Walkden‑Brown1 and Priscilla F. Gerber1*  

Abstract 

Background: A major focus of research on the gut microbiota of poultry has been to define signatures of a healthy 
gut and identify microbiota components that correlate with feed conversion. However, there is a high variation in 
individual gut microbiota profiles and their association with performance. Population level samples such as dust and 
pooled excreta could be useful to investigate bacterial signatures associated with productivity at the flock‑level. This 
study was designed to investigate the bacterial signatures of high and low‑performing commercial meat chicken 
farms in dust and pooled excreta samples. Poultry house dust and fresh pooled excreta were collected at days 7, 14, 
21, 28 and 35 of age from 8 farms of two Australian integrator companies and 389 samples assessed by 16S riboso‑
mal RNA gene amplicon sequencing. The farms were ranked as low (n = 4) or high performers (n = 4) based on feed 
conversion rate corrected by body weight.

Results: Permutational analysis of variance based on Bray–Curtis dissimilarities using abundance data for bacterial 
community structure results showed that company explained the highest variation in the bacterial community struc‑
ture in excreta  (R2 = 0.21, p = 0.001) while age explained the highest variation in the bacterial community structure 
in dust  (R2 = 0.13, p = 0.001). Farm performance explained the least variation in the bacterial community structure 
in both dust  (R2 = 0.03, p = 0.001) and excreta  (R2 = 0.01, p = 0.001) samples. However, specific bacterial taxa were 
found to be associated with high and low performance in both dust and excreta. The bacteria taxa associated with 
high‑performing farms in dust or excreta found in this study were Enterococcus and Candidatus Arthromitus whereas 
bacterial taxa associated with low‑performing farms included Nocardia, Lapillococcus, Brachybacterium, Ruania, Dietzia, 
Brevibacterium, Jeotgalicoccus, Corynebacterium and Aerococcus.

Conclusions: Dust and excreta could be useful for investigating bacterial signatures associated with high and low 
performance in commercial poultry farms. Further studies on a larger number of farms are needed to determine if the 
bacterial signatures found in this study are reproducible.
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Introduction
The taxonomic composition of gut microbiota of poul-
try is affected by various factors such as diet, environ-
ment, breed, infectious agents, and management, and 
has been shown to influence bird health, nutrition, and 
physiology [1–4]. Methods for monitoring of gut health, 
which can be defined as the ‘state of symbiotic equilib-
rium between the microbiota and intestinal tract where 
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animal health and welfare remains unaltered due to dys-
functional intestine’ is a prime focus in poultry research 
as a healthy gut is required to ensure bird welfare and to 
prevent production losses [5]. Several experimental stud-
ies have shown that differentially abundant bacterial taxa 
identified in excreta, ileum, and caecum contents, can 
be correlated with either good or poor bird production 
performance [6–8]. Specifically, bacterial groups that are 
commonly known as butyrate producers and resistant 
starch degraders are usually associated with increased 
bird feed efficiency [8, 9]. However, the bacterial compo-
sition of the gut microbiota of individual birds is highly 
variable within and between studies and specific bacterial 
signatures that reliably correlate with good or poor flock 
performance remain elusive [9, 10].

Within the chicken gut, the highest microbial density 
and the most complex microbial community is found in 
the caecum, and therefore caecal content has been com-
monly used to investigate the gut microbiota [8]. The col-
lection of caecum or gut contents has some drawbacks 
as it requires birds to be euthanized and precludes lon-
gitudinal studies in the same birds [11]. Therefore, there 
is a need for the development of methods that use non-
invasive samples to evaluate gut microbiota [11, 12]. 
Previous studies evaluating excreta, boot sock samples 
and caecal droppings have suggested that boot sock sam-
ples and caecal droppings could be useful alternatives 
to study caecal microbiota composition longitudinally 
[11, 13]. The rationale for the use of these alternative 
sample types is that they are derived from the gastroin-
testinal tract of chickens and could therefore be used to 
infer gut health and perhaps performance. However, the 
relationship of the microbiota composition using non-
invasive population level samples and flock performance 
is not well understood. As measurements of productive 
performance and management interventions in com-
mercial meat chicken farms are mostly applied at farm-
level, a monitoring strategy at a population-level would 
perhaps be advantageous compared to sampling of indi-
vidual birds. The use of non-invasive population level 
samples such as poultry dust, pooled excreta, and litter 
has several advantages compared to individual sampling 
of birds, such as ease of sample collection and the use of a 
small number of samples to represent a population. Dust 
samples, in particular, are dry, stable and can be shipped 
at room temperature. A recent study has shown that 
genomic material of RNA and DNA viruses was stable in 
poultry dust for at least to 4 months when stored at tem-
peratures up to 37 °C [14].

In this study, poultry house dust and fresh pooled 
excreta from the floor were collected weekly from eight 
commercial meat chicken farms of two Australian inte-
grator companies. The farms were ranked as low or high 

performers based on feed conversion ratio corrected for 
body weight by the integrator companies. We hypothe-
sized that microbiota profiles of pooled excreta and dust 
collected from poultry farms would provide specific bac-
terial signatures associated with high and low-productive 
farm performance. This study was specifically designed 
to (1) Determine and compare the bacterial taxa of poul-
try dust and pooled excreta in the two integrator com-
panies; (2) Determine if the bacterial taxa in dust and 
pooled excreta could differentiate high and low-perform-
ing farms.

Methodology
Farms and samples collection
The study was conducted on 16 flocks from eight com-
mercial meat chicken farms (n = 2 flocks/farm) in a 
2 × 2 × 5 factorial arrangement with two Australian inte-
grator companies (A and B), two levels of farm produc-
tive performance (high and low), and five sampling times 
(7, 14, 21, 28 and 35  days of chicken age) as previously 
described [15]. Details of the farms are included in Addi-
tional file 1. Samples were collected between August 26 
and November 19, 2019. The integrator companies var-
ied in a number of management practices, including the 
choice of chicken strain, geographic location, and feed 
formulation. All farms from company A were located in 
the outskirts of Sydney in New South Wales, used the 
Cobb strain of chickens and used a range of bedding 
materials (wood shavings, sawdust, biobedding) (Addi-
tional file 1). All farms from company B were located in 
the outskirts of Adelaide, South Australia, used the Ross 
strain of chickens and straw as bedding material. Two 
farms with consistent high performance and two farms 
with consistent low performance based on historical pro-
duction data were selected by veterinarians from each 
company. The productive performance ranking of each 
farm, which is based on the corrected feed conversion 
rate for the whole farm, was then recorded at the end of 
the production cycle which confirmed that the studied 
flocks ranked high (above the 50 percentile of produc-
tion) or low (below the 50 percentile). Pooled excreta 
and dust samples were collected weekly from two poultry 
houses in each farm at 7, 14, 21, 28 and 35 days of the pro-
duction cycle. Settled dust samples were collected using 
two funnels held in an apparatus suspended at 1.5  m 
height on the wires in the house that support feeders and 
waterers. The funnels which were put in place on the day 
of chick placement captured setting dust and directed 
it into a collection vial attached to the funnel that was 
removed at each sampling and replaced with a new vial. 
Settled dust samples were dry and with fine consistency 
and submitted vials had enough material for testing (at 
least 10 mg of dust). Five fresh individual excreta samples 
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were collected from the poultry house floor to form one 
pooled sample and four pooled excreta samples were col-
lected from each poultry house in a stratified sampling 
pattern. A total of 406 samples (dust = 138, excreta = 268) 
were received from the participant farms, from which 
17 samples were discarded because of poor quality DNA 
making a total of 389 samples analysed in this study 
(dust = 131; excreta = 258).

DNA extraction
Previous experience with these types of samples had 
shown that no one DNA extraction method gave good 
DNA yields from both dust and excreta. To maximise 
DNA quality and yields from each sample type different 
extraction kits were used. DNA extraction of dust was 
performed using the QIAamp® Fast DNA Stool Mini Kit 
(Qiagen, Hilden, Germany) according to the manufactur-
er’s instructions with minor modifications [15]. Briefly, 
0.4  g of 1  mm glass beads were added to 2  ml micro-
tubes containing 1  ml of InhibitEX and 10  mg of dust 
and homogenised for 5 min at maximum speed using a 
Qiagen Tissue Lyser II (Qiagen, Hilden, Germany). The 
homogenised suspensions were then heated at 95 °C for 
10  min. DNA extraction from excreta was performed 
using the DNeasy PowerSoil Pro Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions, 
except that 50 mg of excreta were homogenised for 5 min 
with PowerBead at maximum speed using Qiagen Tis-
sue Lyser II (Qiagen, Hilden, Germany) with subsequent 
heating of homogenised suspensions at 90 °C for 10 min. 
It is acknowledged that different extraction methods can 
result in different 16S amplicon analysis results [16]. The 
type of sample and DNA extraction kits affect the quality 
of DNA and composition of bacteria following 16S rRNA 
gene sequencing using Illumina MiSeq sequencer [16, 
17] but such differences are mainly restricted to the yield 
of Gram-positive bacterial DNA due to efficiency of cell 
breakage. Both methods used in the current study used 
efficient bead-beating protocols to minimise this effect.

16S rRNA gene amplification and analysis
Microbiota composition was assessed by sequencing of 
amplicons across the V3-V4 region of 16S rRNA genes. 
Amplicons were produced using custom-designed bar-
coded primers targeting the 343–806 region, ACT CCT 
ACG GGA GGC AGC AG (forward primer) and GGA 
CTA CHVGGG TWT CTAAT (reverse primer), prim-
ers also contained spacer sequences and Illumina 
sequencing linkers, following the design of Fadrosh 
et  al. [18]. The amplicons were sequenced on an Illu-
mina MiSeq Sequencer using 2 × 300  bp paired-end 

reads. Sequence data were trimmed with Trimmomatic 
and then fatsq files were analysed using DADA2 in 
QIIME2 v2020.6 [19] to denoise and produce Ampli-
con Sequence Variants (ASVs). ASVs were clustered at 
99% identity using the VSEARCH plugin [20].  Taxon-
omy was assigned using the SILVA database. All of the 
downstream statistical microbial data analysis and visu-
alisation were done using Calypso software [21]. A total 
of 9624 ASVs were found. The sequence data used for 
analysis is available in  NCBI  under BioProject acces-
sion number PRJNA730489.

Statistical analysis
The bacterial community composition data was nor-
malised using Hellinger transformation before statis-
tical comparison. Statistical analyses were performed 
using the Calypso software (http:// cgeno me. net/ wiki/ 
index. php/ Calyp so) except for the permutational multi-
variate analysis of variance (PERMANOVA) which was 
performed using the PRIMER v7 software including the 
PERMANOVA + add-on module [22].

Distance based redundancy analysis (dbRDA) using 
Bray–Curtis dissimilarity was used to visualize the dif-
ference in bacterial community structure between com-
panies in dust and excreta and principal-coordinate 
analysis (PCoA) using Bray–Curtis dissimilarity was 
used to visualize the differences in bacterial community 
structures between bird age (7, 14, 21, 28 and 35 days). 
To examine the effects of sample type, company, bird 
age, performance and their interactions in the bacte-
rial community structures, permutational multivariate 
analysis of variance  (PERMANOVA) based on Bray–
Curtis dissimilarities using the default setting of Type 
III sum of squares was used [23]. Homogeneity of mul-
tivariate dispersion was tested using permutational 
analyses of multivariate dispersions (PERMDISP)  [24]. 
Linear discriminant  analysis  effect size (LEfSe) was 
used to test the differences in abundance of the bacte-
rial taxa between companies (A and B). The top 50 most 
abundant taxa were selected and Wilcoxon test, area 
under the curve (AUC) and odds ratio (OR) were used 
to identify bacterial taxa more prevalent in high and 
low-performing farms. P values were corrected with 
the false discovery rate and adjusted p value (q) < 0.05 
was considered statistically significant. Bacterial taxa 
with significantly different (q < 0.05) abundance in high 
and low-performing farms with an AUC ≥ 0.90 were 
subjected for further OR analysis. The higher likelihood 
of bacterial taxa occurring in a certain production per-
formance category (high, low) (AUC ≥ 0.90, Wilcoxon 
test q value < 0.05) were considered as ‘signatures’ of 
that production outcome.

http://cgenome.net/wiki/index.php/Calypso
http://cgenome.net/wiki/index.php/Calypso
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Results
Company and age explained the most variation 
in the structure of bacterial community in pooled excreta 
and dust while performance explained the least variation 
in both sample types
As indicated in material and methods two different 
methods were used for DNA extraction of dust and 
excreta which could add variability on the detected 
bacterial communities. Therefore, data was analysed 
by PERMANOVA using model accounting to all vari-
ables in the study (sample type, company, age and 
performance) to assess if the microbial taxa was con-
sistent between samples types and also for each sample 
type separately.

When analysing the whole model, sample type 
explained the most variation in the bacterial commu-
nity structure (12%), followed by company (6%), and 
bird age (5%), while farm performance explained the 
least variation (1%) with significant interaction among 
these factors (Additional files 2; 3).

In dust samples, age explained the most variation in 
the bacterial community structure (13%), followed by 
company (11%) and the least variation was explained 
by performance (3%), with significant interactions 
among these factors (Table  1). In excreta, company 
explained most of the variation (21%) followed by bird 
age (10%) and performance (1%) with significant inter-
actions among these factors (Table 1).

Sample type
Taxonomic assignment at genus level of the bacteria 
found in dust and excreta are shown in Fig. 1. The most 
dominant bacterial genera found in excreta of company 
A were Weissella (mean percentage ± SD 0.38 ± 0.15) 
and Lactobacillus (0.24 ± 0.17) while in company B 
were Lactobacillus (0.53 ± 0.20) and Corynebacterium 
(0.10 ± 0.08) (Fig.  1). In dust samples, Brevibacterium 
(0.22 ± 0.11) and Brachybacterium (0.13 ± 0.09) were 
the most dominant bacterial genera in company A 
while in company B were Staphylococcus (0.15 ± 0.08), 
Corynebacterium (0.12 ± 0.05) and Brachybacterium 
(0.12 ± 0.08) (Fig. 1). At phylum level, the most dominant 
bacterial phyla in excreta and dust of company A and B 
were Firmicutes (0.38 ± 0.24–0.85 ± 0.13) and Actinobac-
teria (0.14 ± 0.13–0.50 ± 0.24) (Additional file  4). Of the 
bacterial taxa (genus level) detected in excreta of com-
pany A or B, 81% were also detected in dust. The shared 
bacterial genera between dust and excreta and the bacte-
rial genera that are exclusive to dust or excreta of compa-
nies A and B are shown in Additional files 5 and 6.

Microbial richness determined by Chao1 diversity 
index was higher in dust compared to excreta in both 
companies (p < 0.001) (Fig.  2). The bacterial genera that 
differentiate dust and excreta of companies A and B 
shown by LEfSe are presented in Additional file 7.

Company
In dust and excreta, 55% and 52% of the bacterial gen-
era were shared between companies, respectively. The 

Table 1 Permutational multivariate analysis of variance (PERMANOVA) results showing the influence of company, age, performance 
and their interactions on the bacterial community structure in excreta and dust samples

Df, degrees of freedom;  R2, proportion of the variance explained by each model; PERMDISP, permutational analyses of multivariate dispersion

Sample type Source df Sum of squares Pseudo-F R2 P value PERMDISP P value

Excreta Company 1 167,120 91.10 0.21 0.001  < 0.001

Age 4 81,418 11.10 0.10 0.001 0.008

Performance 1 10,863 5.92 0.01 0.001 0.03

Age × company 4 39,511 5.38 0.05 0.001

Company × performance 1 12,723 6.94 0.02 0.001

Age × performance 4 14,605 1.99 0.02 0.001

Performance × age × company 4 19,093 2.60 0.02 0.001

Residuals 238

Dust Company 1 29,643 21.94 0.11 0.001 0.003

Age 4 35,962 6.65 0.13 0.001  < 0.001

Performance 1 9151.6 6.77 0.03 0.001 0.11

Age × company 4 15,488 2.87 0.06 0.001

Company × performance 1 4559.6 3.37 0.02 0.001

Age × performance 4 8810.5 1.63 0.03 0.001

Performance × age × company 4 11,313 2.09 0.04 0.001

Residuals 111
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shared bacterial genera between companies and the bac-
terial genera that are exclusive to companies A and B 
are shown in Additional files 8 and 9. Within each com-
pany, microbial communities of pooled excreta (PER-
MANOVA p = 0.001 and  R2 = 0.23; PERMDISP p < 0.001) 
were more dissimilar than dust (PERMANOVA p = 0.001 
and  R2 = 0.12; PERMDISP p = 0.003) which was also evi-
dent in the redundancy analysis ordination plot (Fig. 3). 
The bacterial genera that differentiate companies A and B 
in dust and excreta are shown in Additional file 10.

Bird age
As expected, age had a significant effect on the bac-
terial community structure in both dust and excreta. 
In excreta, age explained 16% variation in company 

A (PERMANOVA p = 0.001) and 24% in company B 
(p = 0.001) while in dust age explained 19% variation in 
company A (p = 0.001) and 32% in company B (p = 0.001).

Bacterial richness was lower at day 7 in company A 
and B farms in excreta (Fig. 4a) and this age group was 
the most divergent compared to samples collected after-
wards (Fig.  4b) when bacterial richness stabilised. Simi-
lar results were seen in dust of company B farms while 
in company A farms bacterial richness was found to be 
similar across all ages. Bacterial richness was higher in 
dust compared to excreta in company A except at days 
21 and 28 when dust and excreta had similar microbial 
richness (Fig. 4a). Similarly, in company B, bacterial rich-
ness was higher in dust compared to excreta except at 
days 7 and 14 when microbial richness between dust and 

Fig. 1 Taxonomic assignment of the bacteria at genus level in dust and excreta stratified by company. The levels of the top 10 most abundant 
genera were shown. Genera that were not included under top 10 most abundant ones were merged together and presented as ‘Others’

Fig. 2 Microbial richness estimated using Chao1 diversity index for dust and excreta of companies A and B. All ages were combined for the analysis
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excreta were similar (Fig. 4a). Figure 5 shows the relative 
abundance of bacterial genera across different ages in 
dust and excreta samples of company A and B. From days 
7–35, excreta were dominated by Weissella in company 
A and Lactobacillus in company B. Dust was dominated 
by Unclassified bacterial groups at day 7 and Brevibac-
terium at days 14–35 in company A while in company B 
dust was dominated by Unclassified bacterial taxa at day 
7, Staphylococcus at days 14–21, Corynebacterium and 
Brevibacterium at days 28 and 35.

Performance
Production explained the least variation within the data-
set in both dust and excreta (Table  1). PERMANOVA 
results showed highest variation in the bacterial commu-
nity structure between high and low production farms in 
dust at day 7 for company A and at day 28 for company B 
while in excreta it was at day 7 for company A and day 14 
for company B (Table 2).

Bacterial signatures of low and high-performing farms
Although the farm performance explained the least 
variation in the bacterial community structure, some 
bacterial taxa were overrepresented in low or high per-
forming farms and met the ‘bacterial signature’ criteria 
(AUC ≥ 0.90, Wilcoxon test q value < 0.05) (Figs. 6, 7, 8, 9; 
Additional files 11,  12, 13, 14).

Dust samples
No bacterial taxa met the criteria for bacterial signature 
in high-performing farms of company A; whereas for 

company B Dickeya (day 35) met the bacterial signature 
criteria (Figs. 6, 7). Although not statistically significant, 
the abundance of Dickeya was also numerically higher in 
high-performing farms of company A at day 28.

Bacterial taxa in dust of low-performing farms of com-
pany A that meet the bacterial signature criteria were 
Nocardia (day 21), Lapillococcus (day 21), Brachybacte-
rium (day 21), Ruania (days 21 and 28), Dietzia (day 21) 
and Brevibacterium (day 21); whereas for company B 
were Lapillicoccus (day 35) and Ruania (day 35) (Figs. 6, 
7). Although not statistically significant, the abundance 
of Brachybacterium and Dietzia were also observed 
numerically at a higher level in low-performing farms for 
company A at days 14 and 28, Ruania at days 14, 21 and 
35 and Brevibacterium at days 7, 14, 28 and 35; whereas 
in company B the abundance of Lapillococcus and Runia 
were numerically higher at days 7 to 28.

Excreta
Bacterial taxa that meet the bacterial signature criteria of 
high-performing farms in company A were Enterococcus 
(day 7) and unclassified group of bacterial taxa (day 7); 
whereas for company B were Enterococcus (day 35) and 
Candidatus Arthromitus (day 14) (Figs.  8, 9). Although 
not statistically significant, the abundance of unclassi-
fied group of bacterial taxa and Enterococcus were also 
observed numerically at a higher level in high-perform-
ing farms of company A at days 14–28; while for com-
pany B was Candidatus Arthromitus at days 7, 21 and 28.

No bacterial taxa meet the bacterial signature crite-
ria of low performing farms for company A; whereas for 

Fig. 3 Redundancy analysis showing dissimilarity in the bacterial community structure between companies stratified by sample type
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company B bacterial taxa that meet the bacterial signa-
ture criteria were Jeotgalicoccus (day 14), Corynebac-
terium (day 14) and Aerococcus (day 14) (Figs.  8, 9). 
Although not statistically significant, the abundance of 
Jeotgalicoccus was also observed numerically at a higher 
level in low-performing farms of company B at days 7, 21 
and 28, and Corynebacterium and Aerococcus at days 21 
and 28. There was no overlap in the bacterial signatures 
from high and low-performing farms between dust and 
excreta of company A and B farms (Figs. 6, 7, 8, 9).

Discussion
Many studies have associated gut microbiota with feed 
conversion and weight gain in meat chickens under 
experimental conditions. We therefore hypothesized that 
microbiota profiles of population level samples would 
identify specific bacterial taxa associated with produc-
tive performance in commercial meat chicken farms. In 
the current study, overall farm performance explained 
the least amount of variation in the bacterial community 
structure for both dust and excreta samples. Although 

Fig. 4 Alpha and beta diversity in dust and excreta samples stratified by company. a Alpha diversity was assessed using Chao1 diversity index and 
b principal‑coordinate analysis plots using Bray–Curtis dissimilarity showing variation in the bacterial community structure across bird age
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Fig. 5 Top 10 most abundant taxa of company A and B farms in dust and excreta samples across different age of the chickens (7, 14, 21, 28 and 35). 
Genera that were not included under top 10 most abundant ones were merged together and presented as ‘Others’

Table 2 Variation in the bacterial community structure between high and low‑performing farms of company A and B across the 
production cycle (7, 14, 21, 28 and 35) in excreta and dust samples using permutational multivariate analysis of variance (PERMANOVA)

PERMDISP, permutational analyses of multivariate dispersions

*Dust samples collected on day 7 from company B were excluded due to the small sample

Values in bold indicate statistical significance (p < 0.05)

Sample type Company Chicken Age (days) PERMANOVA PERMDISP

Pseudo-F R2 P value P value

Excreta A All ages 6.84 0.05 0.001 0.33

7 6.03 0.20 0.001 0.90

14 3.49 0.13 0.003 0.87

21 2.83 0.11 0.004 0.65

28 3.16 0.12 0.001 0.16

35 2.17 0.13 0.007 0.81

B All ages 3.39 0.02 0.003 0.97

7 1.43 0.05 0.10 0.62

14 4.67 0.18 0.001 0.14

21 2.01 0.08 0.03 0.19

28 2.77 0.10 0.001 0.36

35 1.40 0.04 0.10 0.77

Dust A All ages 5.54 0.08 0.001 0.02
7 2.65 0.25 0.08 0.75

14 2.83 0.18 0.001 0.61

21 2.78 0.17 0.002 0.07

28 1.97 0.12 0.04 0.004
35 2.47 0.22 0.007 0.005

B All ages* 2.97 0.05 0.01 0.48

14 1.78 0.14 0.11 0.02
21 1.66 0.11 0.07 0.21

28 3.22 0.24 0.009 0.003
35 2.11 0.13 0.02 0.08
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Fig. 6 Forest plot of the significantly different bacterial taxa (Wilcoxon q value < 0.05) of company A farms in dust with AUC ≥ 90. The results to the 
left of the vertical dotted line (line of no effect) denote the increased chance of occurrence of microbiota towards high‑performing farm and the 
results to the right of the vertical dotted line denotes the increased chance of occurrence of microbiota towards the low‑performing farm

Fig. 7 Forest plot of the significantly different bacterial taxa (Wilcoxon q value < 0.05) of company B farms in dust with AUC ≥ 90. The results to the 
left of the vertical dotted line (line of no effect) denote the increased chance of occurrence of microbiota towards high‑performing farm and the 
results to the right of the vertical dotted line denotes the increased chance of occurrence of microbiota towards low‑performing farm

Fig. 8 Forest plot of the significantly different bacterial taxa (Wilcoxon q value < 0.05) of company A farms in excreta with AUC ≥ 90. The results 
to the left of the vertical line (line of no effect) denotes the increased chance of occurrence of microbiota towards high‑performing farm and the 
results to the right of the vertical dotted lines denotes the increased chance of occurrence of microbiota towards the low‑performing farm

Fig. 9 Forest plot of the significantly different bacterial taxa (Wilcoxon q value < 0.05) of company B farms in excreta with AUC ≥ 90. The results 
to the left of the vertical line (line of no effect) denotes the increased chance of occurrence of microbiota towards high‑performing farm and the 
results to the right of the vertical dotted lines denotes the increased chance of occurrence of microbiota towards the low‑performing farm
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some bacterial taxa were associated with high or low per-
formance, those signatures were highly dependent on the 
sample type, company, and the age of the bird.

The microbiota found within the dust of the poultry 
houses is presumably dependent largely on the excreta 
and litter microbiota with some influence of the envi-
ronmental conditions on how those microbiota develop 
and spread over time. Excreta has been shown to form 
the major component of dust from turkey houses [25] 
and broiler chicken houses [26] and Luiken et  al. [27] 
recently showed that poultry dust bacteriome are more 
diverse but associated with excreta bacteriome composi-
tion. Therefore, it is not surprising that 81% of bacterial 
taxa found in excreta samples were also found in dust. It 
is possible, however, that the different DNA extraction 
techniques used in this study could have influenced the 
detection of bacterial taxa in both sample types.

The microbial community composition varied between 
companies, with companies A and B sharing 55% of bac-
terial taxa in dust and 52% in excreta. This was expected 
as each integrator company used a different chicken 
breed (Cobb and Ross) and breed has been shown to 
influence the establishment of gut microbiota [28]. Other 
factors such as differences in feed formulation, hatchery, 
housing, bedding material, environment, and manage-
ment factors within each company are also likely to have 
driven the observed quantitative differences in the micro-
bial communities [4, 29].

Age also had a significant effect on microbial commu-
nities in dust and excreta in both companies, which is 
similar to previous findings [30–32]. It has been reported 
that bacterial richness increases during the first weeks 
of life while the variation in the microbiota of the gut 
decreases as the age advances [4]. From day 7–35, Weis-
sella and Lactobacillus were the most dominant taxa in 
company A and Lactobacillus was the most dominant 
taxon in company B. This is in consistent with previous 
studies which showed that Lactobacillus was the pre-
dominant taxon in excreta [12, 33].

Farm performance explained the least variation in the 
bacterial community structure in both sample types, 
however, some specific bacterial taxa were differentially 
abundant in high and low performing farms in both dust 
and excreta samples. These included Enterococcus, Dick-
eya, Candidatus Arthromitus and an unclassified group 
of bacterial taxa.

Enterococcus, which was found as a bacterial signature 
of high-performing farms in this study, has already been 
explored for probiotic application in poultry. Enterococ-
cus spp. are polysaccharide-degrading bacteria mainly 
responsible for degradation of mixed linked β-glucan in 
the intestine of meat chickens [34]. The combination of 
Enterococcus with Lactobacillus, Bifidobacterium, and 

Streptococcus spp. have been used as probiotics and 
shown to have growth-promoting effects comparable to 
avilamycin treatment [35]. Candidatus Arthromitus has 
been shown to be associated with postnatal maturation 
of immune function in the mouse gut [36]. The func-
tional roles of genus assigned to unclassified group would 
need further investigation although this is difficult to per-
form because of the lack of a system to study their func-
tional role and characteristics [37]. In this study, Dickeya 
spp, which is an economically significant important crop 
pathogen [38], was also found to be associated with high 
performing farms. This is probably a coincidental result 
that needs further investigation.

In this study, no poultry pathogenic bacterial taxa 
was identified, however, Nocardia, Aerococcus and 
Corynebacterium found in low-performing farms could 
potentially cause disease in chickens. Previous research 
has shown that experimental inoculation of Nocardia 
asteroides or Nocardia transvalensis in 10-day-old cock-
erels resulted in depression, gasping and emaciation [39]. 
Aerococcus viridans has been isolated in meat chickens 
with hepatitis [40] and Corynebacteria may cause diph-
theria [41]. Brachybacterium, Brevibacterium and Jeot-
galicoccus which were present mostly in low-performing 
farms at higher levels require further investigation for 
their role in causing dysbiosis or subclinical infection in 
meat chickens. In humans, Brevibacterium spp was con-
sidered as an opportunistic cause of blood and cardio-
vascular infection in the immunocompromised humans 
[42], Brachybacterium nesterenkovii has been isolated in 
the blood stream infections and root canal infection in 
humans [43, 44], so they may have some negative con-
sequences when colonizing chickens. It is important 
to note that the detected taxa are dependent on rela-
tive abundances since the measurement and analysis is 
compositional by nature. This means that non-relevant 
changes in taxa abundances will also change the relative 
abundance of the identified taxon [45]. Thus, it is advisa-
ble to further evaluate the identified taxon related to high 
and low-performing farms more thoroughly via quantita-
tive PCR in future studies.

In conclusion, the study identified microbial taxa 
present in poultry dust and excreta and their associa-
tion with high and low-performance at flock-level. Such 
easily collected samples are a useful research tool for 
evaluating microbiota composition longitudinally in 
commercial flocks to find microbial signatures that cor-
relate with flock health and productivity status. Examin-
ing multiple production cycles from the same farms and 
additional integrator companies is necessary to evaluate 
the reproducibility of the findings in this study. If the 
specific bacterial taxa associate with flock productive 
performance would be reproducible, this would assist in 
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the development of a PCR panel for specific microbiota 
to evaluate and perhaps predict flock productive perfor-
mance or in the evaluation of management intervention 
targeting gut health.
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