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Abstract 

Background: Animals evolved in a microbial world, and their gut microbial symbionts have played a role in their 
ecological diversification. While many recent studies report patterns of phylosymbiosis between hosts and their gut 
bacteria, fewer studies examine the potentially adaptive functional contributions of these microbes to the dietary 
habits of their hosts. In this study, we examined predicted metabolic pathways in the gut bacteria of more than 500 
individual bats belonging to 60 species and compare the enrichment of these functions across hosts with distinct 
dietary ecologies.

Results: We found that predicted microbiome functions were differentially enriched across hosts with different diets. 
Using a machine-learning approach, we also found that inferred microbiome functions could be used to predict spe-
cialized host diets with reasonable accuracy. We detected a relationship between both host phylogeny and diet with 
respect to microbiome functional repertoires. Because many predicted functions could potentially fill nutritional gaps 
for bats with specialized diets, we considered pathways discriminating dietary niches as traits of the host and fit them 
to comparative phylogenetic models of evolution. Our results suggest that some, but not all, predicted microbiome 
functions may evolve toward adaptive optima and thus be visible to the forces of natural selection operating on hosts 
over evolutionary time.

Conclusions: Our results suggest that bats with specialized diets may partially rely on their gut microbes to fulfill 
or augment critical nutritional pathways, including essential amino acid synthesis, fatty acid biosynthesis, and the 
generation of cofactors and vitamins essential for proper nutrition. Our work adds to a growing body of literature sug-
gesting that animal microbiomes are structured by a combination of ecological and evolutionary processes and sets 
the stage for future metagenomic and metabolic characterization of the bat microbiome to explore links between 
bacterial metabolism and host nutrition.
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Background
Host-microbe interactions have shaped the ecologi-
cal and evolutionary history of life on Earth, and there 
is growing evidence that many animals have adapted 
to their diets through a combination of physiological 
adaptations and metabolic pathways encoded by the gut 
microbiome [1–3]. As a result, many vertebrate groups 
show gut microbiomes whose taxonomic compositions 
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closely mirror host evolutionary history and dietary 
strategies [4–6]. Because host diet and evolutionary his-
tory are themselves often correlated (i.e., closely related 
species may share similar diets), it can be challenging 
to parse the relationship between host diet and evolu-
tionary history in influencing microbiome composition, 
leaving little consensus on which force is the primary 
driver in patterning the gut microbiome and whether the 
strength of these forces varies among host clades [7, 8]. 
In addition, it can be difficult to extrapolate potentially 
adaptive functions of animal microbiomes by testing for 
phylosymbiosis, or the recapitulation of host phylogeny 
in bacterial community similarity, alone. The majority 
of studies testing for phylosymbiosis consider only bac-
terial taxonomy and do not explicitly test any functional 
hypotheses [but see 6–8]. Because bacterial communi-
ties are characterized by a high rate of functional redun-
dancy, phylogenetically unrelated microbial lineages 
can fulfill similar ecological and metabolic roles [9, 10]. 
Therefore, different assemblages of bacterial phylotypes 
within hosts can be functionally convergent even in the 
absence of taxonomic congruence [11, 12]. For example, 
three distantly related species of insect-feeding bats from 
Africa were found to have host-specific assemblages of 
bacteria, but the predicted functional profiles of the three 
species’  gut communities were largely convergent [13], 
supporting the observation that similar gut microbiome 
functions can be fulfilled by different sets of bacteria.

To better understand how microbes have influenced 
the evolution of their vertebrate hosts, it is essential to 
understand the functions they provide, as these func-
tions may ultimately become targets of selection. If we 
consider microbes as aggregates of genes and traits, we 
might expect ecological filtering to operate more strongly 
at the level of microbial functions than species identity. 
We might also expect that nutritionally relevant func-
tions should differ among hosts of different dietary hab-
its, as transitions to new food resources would favor the 
retention of microbes capable of metabolizing novel food 
items. It is known that even subtle changes in diet within 
an animal’s lifetime (e.g., as a result of habitat conversion) 
are associated with decreased functional capacity in the 
gut microbiome in primates [14]. Therefore, over evolu-
tionary time, functional repertoires may diverge among 
hosts with different diets, although this may not unilater-
ally be the case in host clades that have more depauperate 
gut communities [12].

To test the hypothesis that microbiome functions 
should vary among mammals with different diets, we 
focused on bats as a model system. Bats, the second-most 
speciose order of mammals, are an ideal system in which 
to examine functional enrichment among hosts with dif-
ferent diets [15]. Unlike other well-studied host-microbe 

systems (e.g., primates [16–18] and rodents [19, 20]), the 
order Chiroptera contains independent dietary radiations 
into every known terrestrial feeding niche, but especially 
frugivory, nectarivory, and carnivory [21]. Within this 
phylogenetic context, it is therefore possible to analyze 
the enrichment of functional pathways in groups of spe-
cies that have undergone independent transitions to sim-
ilar diets. For example, transitions to frugivory occurred 
in two bat families, the Phyllostomidae and Pteropodi-
dae, independent radiations that happened over millions 
of years of geographic isolation [22, 23]. Because both 
of these clades independently switched to a frugivorous 
lifestyle, it is possible to isolate the influence of host diet 
away from that of shared evolutionary history in struc-
turing microbiome functions.

To test for enrichment of predicted functional micro-
bial pathways among hosts with different feeding niches, 
we examined the gut microbiomes of 60 species  span-
ning the full dietary diversity of bats, including insec-
tivorous, frugivorous, omnivorous, sanguivorous (i.e., 
blood-feeding) and carnivorous species. Using 16S rRNA 
gene profiling and phylogenetically-informed prediction 
of bacterial metabolic pathways, we functionally catego-
rized more than 500 individual bat microbiomes and 
tested for differential enrichment of bacterial metabolic 
pathways across the five feeding niches. We used both 
multiple regression of matrices (MRM) and Random For-
est decision trees to test the power of microbiome func-
tions to predict host diet and host taxonomic identity.

Finally, we assessed how the enrichment of these 
inferred pathways is patterned across the bat phylog-
eny to understand whether they might be visible to 
natural selection, and thus inform or respond to the 
evolution of bat hosts. Considering inferred functional 
pathways as “traits” of the host, we tested this hypoth-
esis by fitting our data to comparative models of trait 
evolution. Using a host phylogeny, trait values at the 
tips of the tree are used to compute values at ancestral 
nodes. Next, expected trait values are simulated under 
observed models of evolution. Finally, observed trait 
data can be compared with the trait values expected 
under each model, and model fit can be assessed using 
Akaike’s Information Criterion (AIC) [24]. In particu-
lar, we were interested in determining if microbiome 
functional pathways evolve neutrally or in patterns that 
might invoke natural selection. To test this, we fit our 
observed functional pathways to four evolutionary trait 
models: White Noise, Brownian Motion, Early Burst, 
and Ornstein–Uhlenbeck. These models describe dif-
ferent evolutionary hypotheses about how continuous 
traits evolve along a phylogeny. The White Noise model 
assumes traits evolve as random draws from a common 
distribution, while Brownian Motion (BM) is a neutral 
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model often described as reflecting random drift as a 
result of mutation as hosts diverge through time. Early 
Burst (EB) models describe a trait that diversifies rap-
idly early on in host evolution and slows over time as 
niches are filled. Finally, the Ornstein–Uhlenbeck (OU) 
model, like Brownian Motion, is a random walk with 
an additional parameter that “pulls” traits toward some 
adaptive optimum, and thus, invokes selection [25].

Results
The full dataset contained 545 microbiome samples from 
representatives of 13 families of bats (42 genera, 60 spe-
cies). This dataset samples all known bat feeding niches 

and includes instances of repeated independent dietary 
transitions to frugivory/nectarivory across the order 
(Fig.  1). Functional prediction with PICRUSt2 resulted 
in a feature table of 448 MetaCyc pathways [63]. Using 
PERMANOVA, we found that overall, predicted func-
tional consortia were significantly differentiated by host 
taxonomy and diet, and that this was true regardless of 
whether we classified diet using a coarse or fine clas-
sification scheme (Fig.  2A, B, Additional file  1: Fig. S1; 
Table 1). Host taxonomy explained a greater percentage 
of the variation than diet, although both were significant 
factors (Table  1). For the pairwise tests, we found that 
predicted microbiome functions of frugivorous bats were 

Fig. 1 Phylogenetic relationships between hosts sampled in this study. Pruned phylogeny was recovered from VertLife.org (Upham et al. 2019). 
Biogeographic origin of hosts is indicated in the outermost ring of tiles, while host feeding niche is indicated by the innermost ring of tiles
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significantly different from those of insectivores, carni-
vores, and sanguivores, but not different from omnivores 
(Table  2). Carnivorous bats were highly distinguishable 
from all other feeding guilds. Omnivorous bats over-
lapped with frugivorous and sanguivorous bats (Fig. 2B; 
Table  2) but were distinguishable from strict insecti-
vores and carnivores. The ecologically hyper-specialized 
vampire bats (sanguivores) had distinctive predicted 
functional repertoires compared to all other feeding 
guilds except omnivores (Table 2).

When we examined which predicted pathways defined 
each of the dietary niches, LEfSe analysis showed 
that a total of 37 functional pathways were differen-
tially abundant between primarily animal-feeding and 

Fig. 2 Microbiome functions are differentially enriched across herbivorous and animalivorous bats. A Results of LDA-LEfSe analysis of metagenome 
functions between primarily herbivorous and animalivorous bats (cutoff LDA score ≥ 2.5). The symbol † indicates an engineered pathway, while 
* indicates a pathway associated with synthesis of an essential amino acid. B Principal coordinates analysis of bat metagenome functions, where 
each dot represents an individual animal’s metagenome. C Relative abundance of two functions determined to be differentially enriched in bats of 
different feeding guilds, where each bar represents one sample. Horizontal lines indicate mean relative abundance within groups. Omnivores are 
not depicted due to small sample size

Table 1 Result of PERMANOVA of fine and coarse feeding niche 
on predicted microbiome functions

** are significant at the P < 0.05 level after Benjamini–Hochberg correction

Df Sums of Sq Fmodel R2 Padj

Fine Niche 5 0.65 8.67 0.06 **0.001

Host species 55 2.49 3.02 0.24 **0.001

Residuals 484 7.26 – 0.70

Total 544 10.40 – 1.00

Coarse Niche 2 0.28 9.28 0.03 **0.001

Host species 58 2.87 3.29 0.27 **0.001

Residuals 484 7.26 – 0.70

Total 544 10.40 – 1.00
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plant-feeding bats (Fig. 2A, Table 3). All of the enriched 
pathways in animalivorous bats were associated with 
biosynthesis (93.7%) or generation of precursor metabo-
lites (6.3%), while pathways enriched in herbivorous 
bats were split between biosynthesis (62.0%), degrada-
tion, utilization, and assimilation functions (33.3%), and 
generation of precursor metabolites (4.7%). Six of the 
pathways enriched in herbivorous bats were associated 
with proteinogenic amino acid biosynthesis, specifically 
the production of the essential amino acids isoleucine, 
valine, tryptophan, and methionine [64]. Figure 2C (left) 
depicts the differential abundance of one of these path-
ways, the L-tryptophan biosynthesis pathway, among 
feeding niches. Pathways enriched in animal-feeding 
bats were more general, and were split among fatty acid, 
amino acid, and secondary metabolite processing path-
ways (Fig.  2A, Table  3). The relative abundance of one 
animalivore-enriched pathway, the thiazole biosynthesis 
pathway, is shown in Fig.  2C (right). Another pathway 
found to be enriched in frugivores was determined to be 
PWY-7111, an engineered pathway not known to occur 
naturally in any bacterial species. The contributing bacte-
rial ASV for this pathway likely did not match closely to 
a known reference microorganism during the PICRUSt2 
predictions (Fig. 2A; Table 3). We also performed LEfSe 
differential abundance analysis on the fine-scale niche 
groupings. The results were consistent with the coarse 
analysis, with some additional pathways contributing to 
the observed differences among dietary ecologies (e.g., 
ketogluconate metabolism for frugivores, cobinamide 
salvage in sanguivores) (Fig. 3).

Matrix regressions (MRM) run on the full dataset 
determined that only the patristic distance (i.e., phyloge-
netic distance between hosts) was predictive of microbi-
ome functional dissimilarity (MRM  Pphylo = 0.01) while 

ecological distances computed from EltonTraits quan-
titative data were not significantly predictive (MRM 
Pecol = 0.38). However, matrix regression analysis requires 
merging all within-species replicates to create a distance 
matrix based on averaged values for each species. To 
account for high amounts of inter-individual variation in 
microbiomes, we also subjected the data to Random For-
est analysis to test the predictive power of metagenome 
functions on an individual sample, rather than whole-
species, basis.

Random Forest (RF) analyses were conducted to test 
the ability of metagenomic functions to classify bats 
into dietary guilds as well as host family and genus. For 
the coarse (animalivorous vs. herbivorous) niche clas-
sification model, the out-of-bag error rate was 13.2%. 
Within-class error varied according to host niche; the 
model performed particularly well at identifying primar-
ily animalivorous bats based on metagenome functions, 
but less so for primarily plant-feeding animals, and very 
poorly for omnivores (Table 4). The fine niche model per-
formed slightly worse, with an OOB of 15.6%. Similarly, 
the model performed best at predicting the insectivorous 
classifications, followed by frugivorous, and struggled 
substantially to predict omnivores, carnivores, and san-
guivores (Table 5). Models for predicting host family and 
genus performed poorly, with out-of-bag error rates of 
49.4% and 58.4%, respectively (Additional file 4: Table S3, 
Additional file  5: S4). We tested the accuracy of the RF 
niche models using leave-one-out cross-validation, a 
resampling procedure used to estimate how a model 
is expected to perform in general when used to make 
predictions on data not used during the training of the 
model. Cross-validation on 500 trees produced an accu-
racy rate of 86.6% (Kappa = 0.626) for the coarse clas-
sification model and 84.2% (Kappa = 0.650) for the fine 
classification model. We next sorted the functional vari-
ables by mean decrease in model accuracy (i.e. variable 
importance in training the model). The resulting top ten 
most informative features for classifying host diets are 
shown in Fig. 4.

Phylogenetic comparative analyses were performed 
on the ten most informative functional pathways identi-
fied by random forest analysis (Fig.  4). Our sampling of 
the clade encompassed 13 families, representing about 
60% of the family-level diversity of extant bats [65]. The 
enrichment or depletion of predicted microbiome path-
ways was not distributed randomly with respect to host 
phylogeny; for example, the saturated fatty acid elon-
gation pathway was selectively underenriched in the 
Pteropodidae and Phyllostomidae (Fig.  5A). To test for 
phylogenetic signal in pathway enrichment, we calculated 
Pagel’s λ for all ten metagenomic pathways. All pathways 
had low phylogenetic signal in general, with P164-PWY 

Table 2 Pairwise PERMANOVA results for predicted functions 
among fine-scale feeding niches

Comparisons indicated with ** are significant at the P < 0.05 level after 
Benjamini–Hochberg correction

Sums  
of Sq

Fmodel R2 P-value P adj

Carnivore ↔ Frugivore 0.103 6.913 0.046 0.001 **0.004

                ↔ Insectivore 0.114 5.779 0.016 0.006 **0.013

                ↔ Omnivore 0.060 3.791 0.275 0.008 **0.015

                ↔ Sanguivore 0.079 5.014 0.125 0.003 **0.009

Frugivore ↔ Insectivore 0.234 12.740 0.025 0.001 **0.004

                 ↔ Omnivore 0.035 2.413 0.016 0.041 0.061

                 ↔ Sanguivore 0.246 16.856 0.090 0.001 **0.004

Insectivore↔ Omnivore 0.058 2.961 0.008 0.028 **0.047

                 ↔ Sanguivore 0.249 12.844 0.032 0.001 **0.004

Omnivore   ↔ Sanguivore 0.010 1.203 0.194 0.440 0.507
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(purine nucleobase degradation) having λ statistically 
equivalent to zero. The pathways OANTIGEN-PWY 
(O-antigen biosynthesis pathway) and BRANCHED-
CHAIN-AA-SYN-PWY (branched chain amino acid syn-
thesis superpathway) both had low phylogenetic signal 
with λ = 0.1. The pathways PWY-6612 (tetrahydrofolate 
biosynthesis superpathway), LACTOSECAT-PWY (lac-
tose and galactose degradation superpathway), and DTD-
PRHAMSYN-PWY (dTDP-β-L-rhamnose biosynthesis) 

all had λ = 0.12. The pathways with the highest phyloge-
netic signal were the FASYN-ELONG-PWY (saturated 
fatty acid elongation, λ = 0.13), P125-PWY ((R,R)-butan-
ediol biosynthesis, λ = 0.16), and PWY-1269 (CMP-
3-deoxy-D-manno-octulosonate biosynthesis, λ = 0.19) 
respectively (Fig. 5B).

In terms of model fit, all AIC weight was split between 
the OU and White Noise models, with Brownian Motion 
and Early Burst models receiving none of the AIC weight 

Table 3 Differentially enriched metagenome functions recovered from LEfSe analysis

All LDA scores were retained only where LDA ≥ 2.5 and are shown rounded to the second decimal place. Wilcoxon test was considered to be significant if P ≤ 0.05. † is 
an engineered metabolic pathway, while * notes a synthesis pathway for an essential or conditionally essential amino acid

MetaCyc Pathway Superpathway Enrichment LDA Score Wilcoxon P

DTDPHRAMSYN_PWY Carbohydrate Biosynthesis Herbivorous 2.92 1.27E−14

OANTIGEN-PWY Carbohydrate Biosynthesis Herbivorous 2.90 8.91E−15

SALVADEHYPOX-PWY Nucleoside and Nucleotide Degradation Herbivorous 2.76 2.10E−07

†PWY-7111 Engineered Herbivorous 2.74 6.98E−09

P125-PWY Other Biosynthesis Herbivorous 2.69 7.95E−20

PWY-6471 Cell Structure Biosynthesis Herbivorous 2.69 8.12E−07

PWY-6353 Nucleoside and Nucleotide Degradation Herbivorous 2.66 6.18E−07

LACTOSECAT-PWY Carbohydrate Degradation Herbivorous 2.64 1.40E−13

*PWY-5101 Amino Acid Biosynthesis Herbivorous 2.63 1.10E−07

BRANCHED-CHAIN-AA-SYN-PWY Amino Acid Biosynthesis Herbivorous 2.62 3.68E−09

*PWY-5103 Amino Acid Biosynthesis Herbivorous 2.61 2.09E−09

*ILEUSYN-PWY Amino Acid Biosynthesis Herbivorous 2.61 8.36E−08

*VALSYN-PWY Amino Acid Biosynthesis Herbivorous 2.61 8.36E−08

P124-PWY Fermentation Herbivorous 2.59 3.39E−09

*TRPSYN-PWY Amino Acid Biosynthesis Herbivorous 2.58 7.93E−07

*HSERMETANA-PWY Amino Acid Biosynthesis Herbivorous 2.58 1.23E−06

GLYCOCAT-PWY Polymeric Compound Degradation Herbivorous 2.55 7.96E−06

PWY-6612 Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Herbivorous 2.54 7.51E−09

PWY-6737 Polymeric Compound Degradation Herbivorous 2.53 2.33E−05

PWY-6608 Nucleoside and Nucleotide Degradation Herbivorous 2.52 8.16E−05

PWY-7431 Amine and Polyamine Degradation Herbivorous 2.50 3.29E−08

GLYCOGENSYNTH-PWY Carbohydrate Biosynthesis Herbivorous 2.50 1.83E−05

HEMESYN-PWY Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Animalivorous 2.50 0.0165

PWY-6895 Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Animalivorous 2.51 9.74E−09

PWY-5100 Fermentation Animalivorous 2.52 0.013

PWY0-1241 Carbohydrate Biosynthesis Animalivorous 2.55 1.68E−06

PWY-6467 Cell Structure Biosynthesis Animalivorous 2.55 0.00052

PWY-5973 Fatty Acid and Lipid Biosynthesis Animalivorous 2.55 1.88E−05

NAGLIPASYN-PWY Cell Structure Biosynthesis Animalivorous 2.58 6.92E−05

PWY-7560 Secondary Metabolite Biosynthesis Animalivorous 2.58 0.00044074

NONMEVIPP-PWY Secondary Metabolite Biosynthesis Animalivorous 2.58 0.0004

PWY-1269 Carbohydrate Biosynthesis Animalivorous 2.59 5.64E−05

*PWY-5097 Amino Acid Biosynthesis Animalivorous 2.61 0.0004

PWY-6892 Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Animalivorous 2.64 3.33E−08

PWY-6891 Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Animalivorous 2.66 1.09E−09

PWY-7663 Fatty Acid and Lipid Biosynthesis Animalivorous 2.70 2.92E−09

FASYN-ELONG-PWY Fatty Acid and Lipid Biosynthesis Animalivorous 2.78 3.86E−09
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Fig. 3 Functional pathways differentially enriched among dietary guilds. LEfSe results for fine scale niche with minimum LDA score cutoff of ≥ 2.5
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for any pathway. The White Noise model received > 50% 
of the weight for 5 of the 10 pathways tested, with 
another 2 models sharing 50–50 split between White 
Noise and OU models. The OU model received > 50% of 
the weight for only three pathways– saturated fatty acid 
elongation, tetrahydrofolate biosynthesis and salvage, 
and lactose and galactose degradation (Fig. 5B).

Discussion
Our current understanding of host-microbe interac-
tions in wild mammals is mostly limited to observations 
of phylosymbiosis between host clades and their micro-
biotas. While these tests are a necessary and foundational 
step in symbiosis research, the true impacts of microbial 
symbionts on host fitness and evolution cannot be fully 
understood without more explicit inventories of the func-
tions that these communities contribute to their hosts. 
In this study, we found that bats with different dietary 
specializations have microbiomes enriched with poten-
tially adaptive predicted functions (Table  3), and that 
these functions can be used to predict the dietary clas-
sification of the host (Tables 4, 5). When we considered 
bats as either primarily herbivorous or animalivorous, 
very few predicted functions could significantly discrimi-
nate among the groups. However, of the pathways that 
were found to be enriched in herbivorous (i.e. fruit- or 

nectar-feeding) bats, several were pathways associ-
ated with the production of the essential amino acids 
methionine, valine, isoleucine, and tryptophan (Fig.  2A; 
Table 3). Essential amino acids are those than cannot be 
synthesized de novo by the host; they must either already 
be present in the diet or produced through microbial 
metabolism and absorbed through the host intestine 
[26, 27]. Essential amino acids may be particularly limit-
ing nutrients for obligate frugivores; fruits consumed by 
fruit bats are deficient in protein compared with insects 
[28, 29], such that existing on a diet primarily consisting 
of fruit may pose nutritional challenges that can be par-
tially overcome by the metabolic contributions of symbi-
otic microbes. In a mouse model, it was shown that gut 
microbes can provision essential amino acids when hosts 
are fed on protein-deficient diets [30], lending further 
evidence that gut bacteria play essential nutritional roles 
in their hosts.

While the exact fruits consumed by many frugivorous 
bat species are unknown, phyllostomid bats are known 
to feed on Piper and Ficus fruits, which are considered 
to be nutritionally poor food resources [28]. The bacte-
rial genus Erwinia was prevalent in the microbiotas of 
Belizean fruit bats; members of this genus are known to 
provide supplemental protein to herbivorous adult olive 
flies, suggesting that they may fulfill a similar role in the 
microbiomes of fruit bats from Belize [31]. Fruit con-
sumed by the pteropodid species Micropteropus pusillus 
and Epomops buettikoferi were shown to contain 3.3% 
protein by dry mass, indicating that African fruit bats 
feed on nutritionally poor fruits as well [29]. In African 
fruit bats, the bacterial genus Gemella was enriched 
compared to insectivores [11]. This genus is predicted to 
be capable of synthesizing methionine according to the 
Kyoto Encyclopedia of Genes (KEGG), and may partially 
explain the enrichment in L-methionine pathways we 
observed in frugivores (Fig. 3). Other functions enriched 
in herbivorous bats were related to carbohydrate degra-
dation (e.g., glycogen and starch), as well as biosynthesis 
of the B-vitamin folate. Enrichment in these bacterial 
pathways may be complementary to the nutritional com-
position of various fruits, which are made up primarily of 
water and simple carbohydrates with relatively few pro-
teins, vitamins, and minerals [28, 32, 33].

Differential enrichment analysis detected more func-
tional pathways discriminating among dietary groups 
when classified more finely (Fig. 3). Notably, in our sam-
ple of 23 vampire bat (Desmodus rotundus) microbiomes, 
we found many pathways related to cofactor and vitamin 
biosynthesis, inorganic nutrient metabolism, and amine 
degradation to be enriched (Fig.  3). This is consistent 
with previous findings by Zepeda-Mendoza et al. (2018), 
which showed enrichment of microbial genes related to 

Table 4 Confusion matrix for the coarse niche random forest 
model

Within-class error rates were 3.0% for Animalivores, 100% for omnivores, and 
38% for herbivores

Animalivorous Omnivorous Herbivorous

Animalivorous 386 0 12

Omnivorous 2 0 4

Herbivorous 54 0 87

Table 5 Confusion matrix for fine-scale niche random forest 
model

Within-class error rates were 100% for carnivores, 34.8% for frugivores, 3.9% for 
insectivores, 100% for omnivores, and 29% for sanguivores

Carnivore Frugivore Insectivore Omnivore Sanguivore

Carni-
vore

0 0 6 0 0

Frugi-
vore

0 92 49 0 0

Insec-
tivore

0 14 346 0 0

Omni-
vore

0 4 2 0 0

San-
guiv-
ore

0 1 8 0 22
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cofactor and vitamin metabolism, siderophore biosynthe-
sis (important for handling iron and heme), and amino 
acid metabolism [2]. To link these functions to bacterial 
phylotypes present in the vampire bat microbiome, we 
find that vampire bat gut microbiotas are characterized 
by high relative abundance of Peptostreptococcaceae, 
which have the rare ability among microbes to ferment 
amino acids [34, 35]. Blood is 78% liquid, but its solid cel-
lular phase contains 93% proteins and less than 1% carbo-
hydrates [36], suggesting that members of this bacterial 
clade may assist in protein processing in the vampire bat 
host.

Overall, animalivorous bats had metagenomes that 
were characterized by vitamin, proteinogenic amino acid, 
fatty acid, and carbohydrate synthesis (Table  3). This 

more generalized suite of microbial functions is likely a 
byproduct of energetic demands on insectivorous hosts. 
Insect-eating bats rely on recently consumed exogenous 
resources to fuel flight, which may possibly select for 
microbes which can generate other, non-combustible 
metabolites for later use by the host [37, 38].

In addition to identifying specific pathways associ-
ated with the feeding habits of these species, we wanted 
to know how predictive overall functional composition 
was of dietary guild. Our random forest models per-
formed well at predicting host diet, with accuracy rates 
between 80 and 85% regardless of whether we classi-
fied diet using a coarse or fine classification scheme. The 
models were best at predicting insectivorous or primar-
ily animalivorous species based on their gut microbiomes 

Fig. 4 Top ten most important functional pathways for the coarse (purple) and fine scale (orange) classification models. Variable importance was 
determined by ranking the mean decrease in accuracy for each of the metagenome functions used to create the random forest classifiers. Coarse 
classification scheme: animalivorous vs. herbivorous, Fine classification scheme: sanguivorous, omnivorous, insectivorous, frugivorous, carnivorous



Page 10 of 17Ingala et al. Animal Microbiome            (2021) 3:82 

but were substantially worse at predicting frugivores 
and omnivores. It is important to note that many dietary 
specializations, including frugivory and nectarivory, 
are more labile than previously thought [39–41]. For 

instance, some species of bats are known to occasion-
ally take insects despite being considered “frugivores” 
[42], so rather than existing as discrete, closed niches, 
many bat species probably fall along a spectrum running 

Fig. 5 Phylogenetic comparative analyses. A Host phylogeny colored by average functional pathway abundance for FASYN-ELONG-PWY. Shaded 
boxes highlight two clades with independent transitions from insectivory to other dietary guilds (Pteropodidae, Phyllostomidae). B Weighted AICs 
for four evolutionary models and lambda estimates for the ten pathways most informative for discriminating among diet guilds, shown as overlaid 
grey points
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from primarily plant-feeding, to omnivorous, to primar-
ily animal-feeding. In light of this view, it is unsurprising 
that the random forest models failed to correctly identify 
omnivores 100% of the time. Omnivorous microbiomes 
are not likely characterized by their own suites of func-
tions  per se. Rather, they are more likely functionally 
intermediate between strict insectivores and frugivores, 
which the PCoA of predicted metagenome functions 
supports (Fig. 2B). The matrix regressions did not detect 
a meaningful correlation between host metagenomic dis-
tances and diet; however, given the high level of within-
species microbiome variation in bats [11, 12, 43], it is 
likely that averaging functions within species so that 
they match the taxon-level dietary data from EltonTraits 
introduces inappropriate levels of noise to the distance-
based analysis. Taken with our random forest results, we 
conclude that host diet and microbiome functions may be 
related on a per-sample rather than per-taxon basis. The 
phylogenetic matrix regression also recovered a relation-
ship between host phylogeny and microbiome function, 
suggesting that overall functional profiles may be related 
to host evolutionary history. However, the MRM method 
requires collapsing all of the microbiome functional vari-
ation into patristic distances that can obscure more fine-
scale patterns. Random Forest models were unable to 
predict host family or genus membership using micro-
biome functions alone (Additional file 4: Table S3, Addi-
tional file 5: Table S4), suggesting that while functions are 
characteristic of host diet, they are not able to discrimi-
nate among related hosts.

By contrast, the comparative phylogenetic analyses, 
which were performed on individual pathways rather 
than distances, detected very low phylogenetic signal in 
all of the tested pathways, with the data for most path-
ways best fitting a white noise, or phylogeny independent, 
model of trait evolution (Fig.  5B). However, three criti-
cal metabolic superpathways dealing with unsaturated 
fatty acid elongation, folate biosynthesis, and lactose 
catabolism were more heavily weighted toward an OU 
model of evolution (Fig. 5B). The OU model differs from 
a Brownian Motion model in that a stochastically vary-
ing trait is assumed to evolve toward an optimal value 
rather than neutrally along the phylogeny [44]. While we 
cannot say for certain whether the pathways fitting the 
selection-invoking evolutionary model are optimized to 
host ecology, when these pathways are mapped onto the 
host phylogeny, it is clear that their enrichment or deple-
tion is mostly clustered in the clades that have experi-
enced independent transitions away from insectivory, the 
Phyllostomidae and the Pteropodidae (Fig.  5A). Taken 
together with the results of the differential enrichment 
analyses, we hypothesize that a subset of metagenome 
functions may respond to selective pressures imposed 

by host diet, such that hosts with nutritionally challeng-
ing diets favor the retention of microbial functions that 
help facilitate their metabolic needs. A major caveat of 
this approach is that microbiome functions need to be 
heritable to be considered as traits of the host. Current 
evidence for vertical transmission is lacking for mam-
mals, but there is some evidence that wild animals have 
a higher proportion of heritable gut bacteria than previ-
ously thought [45]. Given that the gastrointestinal traits 
governing this filter have a genetic, and therefore poten-
tially heritable, basis [46], we also suggest that some 
microbiome members may be considered as “functionally 
inherited” if microbial metabolites, rather than species, 
are the actual targets of host selection [47].

While our data suggests a role for microbes in host 
dietary evolution, our results come with some impor-
tant limitations. One consideration is that microbiomes 
can shift in response to seasonal variation in diet which 
would not be captured by our cross-sectional sam-
pling scheme. In addition, although PICRUSt2 has been 
shown to perform well at predicting functional path-
ways, this algorithm fundamentally relies on the com-
pleteness of microbial gene databases that link pathways 
with bacterial species. Because the bat microbiome is 
relatively poorly characterized, some taxa may not have 
particularly close matches in the database. In addition, 
amplicon-based functional predictions assume that all 
pathways are active. Direct inventories with shotgun 
metagenomic methods can be applied in the future to 
address database completion issues, while metatran-
scriptomics can address which members of the commu-
nity are actively transcribing vs. dead or dormant (e.g., 
[48]). Metabolomic and isotopic techniques can further 
help to pinpoint specific metabolites contributed by the 
host’s own physiological process versus those created by 
microbes [30, 49].

Our results suggest that bats across various feeding 
niches may rely on their gut symbionts to fulfill essential 
metabolic roles that are related to host dietary ecology, 
though the strength of this dependence likely depends on 
the level of host dietary specialization. These results re-
contextualize our understanding of host-microbe inter-
actions within bats. Two recent studies did not detect 
a signal of phylosymbiosis among bats and their gut 
microbiotas, perhaps suggesting that it is unlikely that 
bats depend on their microbiomes as much as other ver-
tebrates because the energetic demands of flight make 
maintaining these associations too costly [11, 12]. Our 
results demonstrate that numerous bacterial pathways—
which may be encoded by a taxonomically diverse set 
of organisms—are correlated with dietary specializa-
tion in bats, suggesting at least some role for microbes 
in their ecological diversification. Questions still remain 
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regarding the strength of this association compared with 
more obligately associated partners (e.g. cattle and their 
ruminal bacteria, insects with obligate endosymbionts). 
While our data cannot speak to the strength of asso-
ciation between bats and their bacteria, we suggest that 
selection on the microbiome may act more at the level 
of metabolic functions than on bacterial taxonomy. This 
interpretation may help to explain why bats have such 
high inter-individual variation in microbiome taxonomic 
composition. In addition, bat longevity may play a role 
in generating such variation. Bats are incredibly long 
lived for their body sizes [50], which may allow them to 
more thoroughly sample their environment for microbes 
throughout the course of their lifetimes. This hypoth-
esis would help explain why bats show strong geographic 
patterning in microbiome taxonomic composition [51]. 
Few studies explicitly track individual bat microbiome 
turnover through time, and field studies on age-related 
phenomena in bats are limited due to the logistical chal-
lenges of recapturing individuals throughout their long 
adult life stages. Longitudinal studies of the microbi-
omes of laboratory-kept individuals could potentially 
test hypotheses about the stability of these relationships 
through time and with changing diets, adding valuable 
insight to the dynamics of bat-microbiome symbioses.

Conclusions
Our study found differential enrichment in predicted 
bacterial metabolic pathways—including essential amino 
acid synthesis, fatty acid biosynthesis, and the genera-
tion of cofactors and vitamins essential for proper nutri-
tion—across bat dietary guilds. These results represent 
novel insights into potential metabolic collaborations 
between gut microbes and their wild mammalian hosts. 
Future studies can add further depth and resolution to 
the patterns we identified here by including more direct 
functional inference methodologies, such as shotgun 
metagenomics and metatranscriptomics. In addition, 
experimental approaches using metabolomic tools can be 
used to further partition the nutrient landscape of mam-
mals between endogenously synthesized products and 
those provisioned by symbiotic gut bacteria. Our results, 
which cover a large proportion of extant bat diversity, 
provide novel functional insights into an ecologically and 
evolutionarily rich host-microbe system.

Methods
Data collection
For this meta-analysis, we combined three bat microbi-
ome data sets, two of which were previously published 
and one that was generated as part of this study (Addi-
tional file 3: Table S2). The 16S rRNA gene data for Afri-
can bats were downloaded from the QIITA database 

from a study conducted by Lutz et  al. 2019 [11]. This 
dataset contained 402 guano samples (31 species), and 
was prepared according to the Earth Microbiome Pro-
ject protocols targeting the V4 region of the 16S rRNA 
gene (515f/806r) [52]. We also included previously pub-
lished vampire bat microbiotas from Ingala et al. (2019) 
(n = 23, 1 species) to increase ecological coverage, which 
also included 16S genes sequenced using the V4 region 
(515f/806r) [25].

New data were generated from fecal samples of bat 
species from the Americas captured in and around the 
Lamanai Archaeological Reserve in Orange Walk Dis-
trict, Belize (17.75117° N, 88.65446° W) in April–May of 
2016, 2017, and 2018 (n = 114,  28 species). During field 
sampling, we adhered to the best practices for humane 
capture and handling of live mammals outlined by the 
American Society of Mammalogists [53], and all field 
protocols were approved by institutional animal care and 
use committees at the American Museum of Natural His-
tory (AMNH) IACUC-20180123 and Southern Connect-
icut State University (SCSU) IACUC S15-01.18. Briefly, 
bats were live captured in ground-level mist nets or harp 
traps and placed into individual clean cloth holding bags. 
Fecal samples were collected directly from bats or from 
the bottom of holding bats within 30  min of defecation 
using sterilized forceps. Each sample was placed into a 
sterile barcoded tube and immediately preserved in liq-
uid nitrogen. Between uses, holding bags were washed in 
an industrial laundry to minimize cross-contamination of 
fecal samples, and forceps were twice sterilized between 
uses with a 10% DNA-Away solution (Molecular Bio-
products, Inc., San Diego, CA) and water. Samples were 
shipped frozen to the AMNH and stored at − 80 °C prior 
to DNA extraction.

Dietary classification scheme
Because of the limited within-guild sample sizes for some 
dietary categories, such as carnivores, bats were classi-
fied into both “coarse” (Animalivorous or Herbivorous) 
and “fine” (Frugivorous, Carnivorous, Insectivorous, 
Sanguivorous, Omnivorous) dietary categories for sta-
tistical testing. This classification scheme was based on a 
thorough review of recent literature, taking into account 
newer diet studies that have overturned or expanded 
previous assumptions about host diet [e.g., 25, 26]. Still, 
many species do not fit neatly into dietary guilds because 
their feeding habits vary seasonally during breeding 
or in response to resource availability [33, 40, 54–55]. 
We therefore collected species-level foraging informa-
tion from the EltonTraits database [56]. This database 
splits the overall resource use for each species into vari-
ous percentages of fruit and nectar, vertebrate prey, 
and insects, and may therefore be a more ecologically 
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realistic method of measuring the feeding niches of the 
species in this study. We also used this database to vali-
date fine-scale niche assignments, such that bats assigned 
to a fine-scale category had to have at least 50% of their 
diet comprised of a single type of resource, and any bats 
whose diets were composed of approximately equal plant 
and animal material were assigned as “omnivores”(e.g., 
Phyllostomus discolor, whose diet is coded as 30% inver-
tebrates, 40% fruit, and 30% nectar in EltonTraits).

DNA extraction
We performed all DNA isolations and library prepa-
rations in a UV-sterilized laminar flow hood to pre-
vent aerosol contamination. We extracted total DNA 
from each guano sample using the QIAamp PowerFecal 
DNA Kit (MO BIO Laboratories,  QIAGEN  Co., Carls-
bad, CA) following the manufacturer’s instructions with 
the following alterations: prior to homogenization, we 
incubated fecal samples in the provided lysis solutions 
(Powerbead + Solution C1) for 10 min at 70 °C. Next, we 
homogenized the fecal material in a Fisherbrand Bead 
Mill 24 homogenizer (Fisher Scientific, Pittsburgh, PA) at 
6 m/s for 1–2 min, until the fecal slurry was fully homog-
enized. At the elution step, we eluted with warmed 
PCR-grade water instead of the provided C6 buffer and 
incubated columns for two minutes prior to centrifuga-
tion. In addition to our samples, we extracted one “blank” 
(water only) sample to account for bacterial contamina-
tion of the extraction kit, which has been documented as 
an important source of error in other metagenomic stud-
ies [57, 58]. As a positive control, we also extracted 25 µL 
of genomic DNA from a mock microbial community of 
known composition (ZYMOBIOMICS, Zymo Research, 
Inc., Irvine, CA). Purified DNA extracts were preserved 
at − 25  °C prior to next generation sequencing (NGS) 
library preparation.

Microbiota profiling
For the Belize 2016–2017 samples, libraries targeting 
the V4 hypervariable region of the 16S rRNA gene were 
amplified using primer pair 515F/806 [59, 60]. Ampli-
con libraries were generated and sequenced by MrDNA, 
using a single-end sequencing on an Illumina MiSeq plat-
form (Shallowater, TX, USA). All 2018 fecal microbiome 
libraries were prepared and sequenced by the Integrated 
Microbiome Resource facility of Dalhousie University 
(Halifax, NS, Canada). Briefly, each 2018 fecal sample 
underwent PCR amplification of the V6-V8 hypervari-
able region of the 16S rRNA gene using universal prim-
ers 969FB and 1406R [61]. Both 2016–2017 and 2018 
libraries were paired-end sequenced (2 × 300  bp) on an 
Illumina MiSeq platform using V3 chemistry. While it is 
generally preferable to standardize primer target regions, 

our data were prepared for other studies by independent 
contributors and later collated for meta-analysis. Differ-
ent primer regions have the ability to produce slightly 
different taxonomic assemblages, but in general, beta 
diversity metrics have been shown to be robust to both 
primer region and sequencing platform biases [62].

Functional profiling
We processed data generated from different sequenc-
ing runs separately using the QIIME2 v. 2019.10 pipeline 
of tools [63] We imported each dataset and performed 
quality filtering with the DADA2 plugin, which trims 
barcode and primer sequences, identifies and filter chi-
meric sequences, and calls amplicon sequence variants 
(ASVs) [64]. In general, we trimmed the first 10–20 base 
pairs to account for low-quality reads and truncated each 
dataset at the point where per-base quality score tapered 
to below roughly Q = 20. We then used the representa-
tive sequences as input for taxonomic classification using 
the naïve Bayesian classifier trained on the SILVA 132 
99% OTUs database [65, 66]. Each classifier was indi-
vidually trained on the specific primer sets used in each 
study as recommended by the developers [67]. Because 
each dataset was prepared with a slightly different set of 
genetic protocols, we processed each one separately until 
taxonomic assignment was determined. After generating 
taxonomic feature tables for each dataset, we further fil-
tered out mitochondrial and chloroplast reads from the 
datasets as well as any reads that could not be defined at 
least to the phylum level. Such sequences may represent 
novel bacteria not yet characterized in 16S rRNA gene 
databases and are of limited use for functional prediction, 
since functionally annotated whole genome databases are 
generally less complete than marker gene databases [68]. 
After filtering, all datasets were merged into a single fea-
ture table for functional profiling.

It is not possible to directly infer bacterial functions 
from marker gene inventories, so we used Phyloge-
netic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt2) to predict metagen-
omic profiles for each microbiota sample [69, 70]. PIC-
RUSt2 works by first inserting observed 16S rRNA gene 
sequences into a bacterial reference phylogeny, and then 
using hidden state prediction models to assign func-
tions based on the closest matching bacterial reference 
genome [70]. The output of the algorithm reports an ASV 
abundance table normalized by predicted 16S rRNA gene 
copy number for each ASV. We merged all ASV tables 
prior to PICRUSt2 inference to ensure that the same 
predictions would be output for the same ASVs present 
across multiple feature tables.
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Statistical analyses
Previous studies suggest that rarefying data to account 
for variable library depth is not appropriate [71], so 
instead of rarefying our data to an arbitrary subsam-
pling depth, we performed a Hellinger transformation to 
scale the data using R package microbiome [72, 73]. We 
first tested if overall metagenome functional profiles dif-
fered according to host taxonomy and dietary ecology 
(both coarse and fine) using the adonis.pair function in 
R package EcolUtils and applying a Benjamini–Hochberg 
correction for multiple comparisons [74]. Using R pack-
age phyloseq [75], we performed PERMANOVA tests 
on Bray–Curtis distances of metagenomes as a func-
tion of host identity and diet, taking into account the 
nested nature of host taxonomy [study.bray ~ Feeding-
Niche * HostSpecies + HostGenus + HostFamily]. Next, 
we performed paired PERMANOVAs to test for differ-
ences between each individual feeding niche.

PERMANOVA can detect differences between groups 
of data, but the test operates on distance matrices and 
therefore cannot determine which specific functions are 
driving group differences. To test for differential enrich-
ment of specific metagenome functions, we performed 
Linear Discriminant Analysis Effect Size (LEfSe) analysis 
as implemented on the Galaxy platform (https:// hutte 
nhower. sph. harva rd. edu/ galaxy/) [76]. We grouped sam-
ples by feeding niche in both coarse (animalivores, her-
bivores) and fine (frugivores, insectivores, omnivores, 
carnivores, and sanguivores) ecological classification 
schemes, and set the LDA score cutoff to 2.5 to impose a 
strict effect size criterion on differentially abundant fea-
tures. Due to the low number of omnivore observations, 
we grouped them together with the animalivorous bats 
for the coarse LEfSe analysis based on prior knowledge 
that these species rely heavily on insects during some 
seasons [39, 42, 77].

We also sought to assess the influence of diet and host 
phylogeny on predicted microbiome functions by rep-
resenting these values as continuous traits. We merged 
metagenome functions by host species and computed the 
Bray–Curtis distances for all species. For the host phylog-
eny, we computed patristic distances (i.e., the sum of the 
branch lengths linking two nodes) between terminal taxa 
using a pruned phylogeny from Upham et al. 2019 [78]. 
We reconciled taxonomic changes between the sampled 
species and their closest synonymous or sister taxon 
represented in the Upham dataset using batnames.org 
(Additional file 2: Table S1) [79]. For each of these same 
taxa, we also collected species-level dietary data from 
the EltonTraits database [56], which represents mam-
malian diets as percentages of various food resources 
(vertebrates, insects, nectar, fruit, etc.). We transformed 

these proportional data into a distance matrix using the 
function “dist.prop” in R package ade4 using the “Manly” 
method [80, 81]. Using these matrices, we tested for asso-
ciations between gut microbiome functions and host 
phylogeny and diet using multiple regression on matrices 
(MRM) implemented in the R package ecodist using the 
formula merged.functional.dist ~ bat.diets.dist + Patris-
ticDistMatrix [82]. Because bat microbiomes are known 
to be highly variable among individuals of the same spe-
cies [11, 43], we also tested the predictive power of host 
diet using random forests on the full per-individual data-
set. We first removed any features from the dataset that 
were present in fewer than 10% of samples and scaled 
all raw counts by transforming to Z-scores. Finally, we 
constructed random forest classifiers using R package 
randomForest to test the ability of the functional profiles 
of each sample to predict the coarse or fine niche of the 
host [83, 84]. Each classifier was built over 10,000 trees 
and out-of-bag error rate (OOB%) was estimated for 
each model. Model significance and accuracy was further 
evaluated using permutation testing and cross-validation, 
respectively.

We tested for evolutionary signal in microbiome func-
tions by treating each discriminatory functional pathway 
identified by the random forest analysis as a trait of the 
host following an approach similar to that used by Capu-
nitan et  al. (2020) [47]. We used a pruned species-level 
phylogeny of bats from Upham et al. 2019 [78]. Because 
host taxonomy changes frequently, we manually cor-
rect species names to reflect the most up-to-date taxon-
omy and to reconcile ambiguous host species identities 
(Additional file  2: Table  S1). Microbiome traits were 
averaged across individuals of the same species using 
“merge_samples” prior to undergoing center-log trans-
form and matched to the tips in the phylogeny using the 
“treedata” function. Using the “fitContinuous” function 
in geiger [85], we tested the fit of Brownian Motion, Orn-
stein–Uhlenbeck (OU; single optimum), Early Burst, and 
White Noise models and compared them using weighted 
Akaike information criterion (AIC). Akaike weights were 
calculated from AIC scores using the “aicw” function. As 
a measure of phylogenetic signal, we calculated Pagel’s 
lambda (λ) [86], which is a scaling parameter that ranges 
from 0 (no phylogenetic signal) to 1 (strong phylogenetic 
signal).
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