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Possibilities and limits for using the gut 
microbiome to improve captive animal health
Jessica Diaz1 and Aspen T. Reese1,2*  

Abstract 

Because of its potential to modulate host health, the gut microbiome of captive animals has become an increasingly 
important area of research. In this paper, we review the current literature comparing the gut microbiomes of wild and 
captive animals, as well as experiments tracking the microbiome when animals are moved between wild and captive 
environments. As a whole, these studies report highly idiosyncratic results with significant differences in the effect of 
captivity on the gut microbiome between host species. While a few studies have analyzed the functional capacity of 
captive microbiomes, there has been little research directly addressing the health consequences of captive microbi-
omes. Therefore, the current body of literature cannot broadly answer what costs, if any, arise from having a captive 
microbiome in captivity. Addressing this outstanding question will be critical to determining whether it is worth pur-
suing microbial manipulations as a conservation tool. To stimulate the next wave of research which can tie the captive 
microbiome to functional and health impacts, we outline a wide range of tools that can be used to manipulate the 
microbiome in captivity and suggest a variety of methods for measuring the impact of such manipulation preceding 
therapeutic use. Altogether, we caution researchers against generalizing results between host species given the vari-
ability in gut community responses to captivity and highlight the need to understand what role the gut microbiome 
plays in captive animal health before putting microbiome manipulations broadly into practice.
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Introduction
In captivity, wild animals are subject to environments 
and lifestyles that they would not experience in their nat-
ural habitat as a result of significant human manipulation 
of the animals’ built environment, diet, healthcare, and 
social interactions [1]. These novel circumstances can 
lead to improved animal welfare and longevity in some 
species [2], but other species suffer from serious health 
problems under human care and human environments 
[2, 3]. There are diverse health problems which have been 
associated with captivity including issues with metabo-
lism and digestion [4, 5], infection [6, 7], stress [8, 9], and 
reproduction [10, 11]. Reflecting its growing importance 

in other fields of organismal research, the microbiome 
has been proposed as a mediator of host condition under 
captivity [e.g. 12]. However, the extent, predictability, and 
drivers of microbiome changes under captivity remain 
unclear, limiting our ability to utilize microbial interven-
tions to alleviate captivity-associated health problems.

Given the vast number of environmental variables that 
differ between captive and wild environments, it is diffi-
cult to predict how a particular species will fare in captiv-
ity [2]. The potential improvements (including veterinary 
care, freedom from predators, and increased availabil-
ity of food [2]) and potential stressors (reduced range 
and mobility, artificial social groups, frequent proximity 
and contact with humans, etc. [3]) under captivity are 
numerous and hard to isolate from one another. Moreo-
ver, physical and behavioral differences between species 
may modulate the impact of certain changes and lead to 
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varying health outcomes. For example, species that are 
typically solitary in the wild likely face different chal-
lenges than gregarious species when placed into captive 
environments with set social groups [13].

Microbial plasticity or heterogeneous microbial  sen-
sitivity could also contribute to differential animal 
responses under captivity. Diet and environment are 
known to shape the composition of the gut microbiome 
[e.g. 14, 15] with downstream effects on host metabolic, 
immune, and neurological systems in humans and animal 
hosts [16–18]. However, not all microbiomes respond 
similarly or to the same extent when exposed to new 
diets or housing conditions, and not all hosts will expe-
rience physiological effects as a result of microbiome 
plasticity [19, 20]. For example, domestication has been 
found to consistently impact the gut microbiota, but 
there is no singular domesticated gut microbiota [21]. 
Diet and captive habitats, as well as evolutionary change, 
can contribute to domestication related microbial shifts; 
for instance, wild horses kept in zoos show greater  gut 
microbial similarity to domesticated horses than do wild 
animals in their native habitat [22].

Given the potential connection of gut microbial 
changes to downstream health effects and the high prev-
alence of gastrointestinal issues in captive animals (such 
as helicobacter gastritis seen in most captive cheetahs 
[23, 24], callitrichid wasting syndrome observed in vari-
ous New World monkeys [4, 25], and Cryptosporidium 
infection that affects captive sifakas [26]), some have sug-
gested including the microbiome in conservation man-
agement plans for captive animals [e.g. 27, 28]. These 
suggestions are inspired by strong effects of captivity 
observed in comparisons between wild and captive ani-
mal microbiomes. The generalizability of captivity effects 
on the microbiome and their connection to host health 
remain unclear, however, because to date there has not 
been a comprehensive review of the literature.

One of the particular challenges of studying health in 
response to the microbiome is that health is difficult to 
define and measure and varies on a species-by-species 
basis. Health extends beyond survival and reproduc-
tion and encompasses many axes of physical and mental 
well-being. In this paper we refer to health broadly, much 
like Fisher’s definition of animal welfare as “an evaluative 
term […] encompassing aspects of natural selection, cop-
ing, well-being, satisfaction of preferences, fulfilment of 
needs, and natural behaviour, or a combination of them” 
[29]. We emphasize that indicators of health and disease 
will vary between species, and there is no single defini-
tion of host health much like there is no single definition 
of a healthy microbiome [30]. For example, for a species 
struggling with gastrointestinal disease such as the red 
wolf [31], improved health may be defined as decreased 

instances of disease. Meanwhile, for a species that suf-
fers from captive infertility such as the southern white 
rhinoceros [32], improved health may simply mean 
increased fecundity.

In this paper, we intend to help identify and address 
gaps in our understanding of the captive gut microbi-
ome and in turn host health. We review the literature on 
how and why the gut microbiome responds to captivity, 
as well as what is known about the health consequences 
of these changes. To conclude, we highlight major out-
standing questions in the field brought to light by our 
review and propose priority areas for future work, with 
an emphasis on research relevant to conservation efforts.

Review of current literature on the captive 
microbiome
The scope of captivity’s influence on the gut microbiome 
can be summarized with three broad questions. How 
does the microbiome change in response to captivity? 
Why does it change? And, do these changes affect overall 
animal health for the better or for the worse? We focus 
here on the gut microbiome, which has been the subject 
of the preponderance of work on captive microbiomes, 
but note that an important exception considered else-
where [e.g. 33, 34] is the amphibian skin microbiome.

How does the gut microbiome change in response 
to captivity?
There have been more than 60 studies over recent dec-
ades characterizing the effects of captivity on the gut 
microbiome of host species spanning the animal king-
dom. Though the term “captivity” can refer to a variety 
of habitats such as zoos, sanctuaries, labs, farms, or even 
households, most of these studies examine captivity in 
the context of zoos or sanctuaries and sometimes, but 
not always, focus on endangered species. Altogether, it 
is clear that there is no singular “captive microbiome,” as 
differences in microbial diversity and community com-
position between captive and wild environments vary 
greatly among hosts (Table 1).

Many studies that measured microbial diversity report 
decreased gut richness or diversity in individuals in cap-
tivity compared to others in the wild [e.g. 22, 35, 36]. 
However, some studies have reported no difference in 
microbial diversity between the two environments [e.g. 
37, 38], or even increased diversity in captive animals 
[e.g. 39–41]. The most comprehensive test of captiv-
ity effects to date demonstrates this heterogeneity per-
sists even when sampling and sequencing methods are 
controlled for [42]. Of the 11 mammalian families rep-
resented in that analysis, only four showed significantly 
decreased bacterial diversity in captivity. Six other fami-
lies showed no significant difference between the captive 
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Table 1 Papers comparing the gut microbiomes of captive animals and their wild counterparts

Author Year Citation Sample type Species Difference 
in captive/
wild microbial 
diversity?

Difference 
in captive/
wild microbial 
composition?

Functional 
implications 
discussed?

Mammals Alfano et al. 2015 [113] rectal Koala Not reported N Not discussed

Allan et al. 2018 [114] fecal Amargosa vole No difference Y Discussed

Allan et al. 2018 [114] foregut Amargosa vole No difference N Discussed (meta-
bolic function)

Amato et al. 2016 [5] fecal and intes-
tinal

Various colobine 
species

No difference Y Discuss (metabolic 
function)

Benno et al. 1987 [115] fecal Japanese 
macaque

Higher in captiv-
ity

Y Discussed (meta-
bolic function)

Bik et al. 2016 [116] rectal Bottlenose 
dolphin

Not reported N Not discussed

Borbon-Garcia 
et al.

2017 [73] fecal Andean bear Lower in captivity Y Assessed (predicted 
metabolic func-
tions—KEGG path-
ways/PICRUSt)

Cheng et al. 2015 [72] fecal Tasmanian devil Lower in captivity Y Assessed (predicted 
metabolic func-
tions—KEGG path-
ways/PICRUSt)

Clayton et al. 2018 [44] fecal Red-shanked 
douc

Lower in captivity Y Assessed (predicted 
metabolic and 
antibiotic resistance 
functions—KEGG 
pathways/PICRUSt)

Clayton et al. 2016 [55] fecal Red-shanked 
douc, Mantled 
howling monkey

Lower in captivity Y Assessed (predicted 
metabolic func-
tions—PICRUSt)

De Jesus-Laboy 
et al.

2011 [117] fecal Goat Not reported N Assessed (Assess 
presence of anti-
biotic resistance 
genes)

Delport et al. 2016 [118] fecal Australian sea lion Not reported Y Not discussed

Delsuc et al. 2013 [119] fecal Various myr-
mecophagous 
mammals

Not reported Y Not discussed

Eigeland et al. 2012 [120] fecal Dugong Lower in captivity Y Not discussed

Eisenhofer et al. 2021 [35] fecal Southern hairy-
nosed wombat

Lower in captivity Y Discussed (meta-
bolic function)

Frankel et al. 2019 [121] fecal 5 primate species Lower in captivity Y Discussed (meta-
bolic function)

Gao et al. 2019 [87] fecal Tibetan wild ass Lower in captivity Y Discussed (immune 
function)

Gibson et al. 2019 [38] fecal Black rhinoceros No difference Y Assessed (func-
tional metagenom-
ics—metabolic)

Greene et al. 2019 [20] fecal Various lemur 
species

Not reported Y Discussed (meta-
bolic function)

Guan et al. 2016 [122] fecal Sable Not reported Y Discussed (meta-
bolic function)

Guan et al. 2017 [123] fecal Sika deer Higher in captiv-
ity

Y Discussed (meta-
bolic function)

Guo et al. 2019 [124] fecal Giant Panda Lower in captivity Y Assessed (func-
tional metagenom-
ics—metabolic and 
immune)
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Table 1 (continued)

Author Year Citation Sample type Species Difference 
in captive/
wild microbial 
diversity?

Difference 
in captive/
wild microbial 
composition?

Functional 
implications 
discussed?

Hale et al. 2019 [125] fecal Snub-nosed 
monkey

Lower in captivity Y Discussed (meta-
bolic and immune 
function)

Haworth et al. 2019 [126] fecal Mountain goat No difference Y Discussed

Kong et al. 2014 [127] fecal Red panda Lower in captivity Y Assessed (associ-
ated present OTUs 
with cellulose 
degradation abil-
ity (GenBank/
Kimura—phyloge-
netic analysis based 
on 16S))

Li et al. 2017 [86] fecal Forest musk deer No difference Y Discussed (meta-
bolic function)

McKenzie et al. 2017 [42] fecal 41 mammal 
species

Inconsistent 
between species

Y (except even-
toed ungulates)

Discussed (meta-
bolic function)

Metcalf et al. 2017 [22] fecal Przewalski’s horse Lower in captivity Y Not discussed

Milovic et al. 2020 [128] fecal White-footed 
mouse

Lower in captivity Y Not discussed

Minich et al. 2021 [78] fecal White-tailed deer Higher in captiv-
ity

Y Discussed (meta-
bolic and immune 
function)

Moustafa et al. 2021 [129] fecal Asian elephant No difference Y Discussed (meta-
bolic function)

Nakamura et al. 2011 [130] fecal Black howler 
monkey

Lower in captivity Y Discussed (meta-
bolic function)

Narat et al. 2020 [58] fecal Chimpanzee No difference Y Discussed (meta-
bolic function)

Narat et al. 2020 [58] fecal Western lowland 
gorilla

Higher in captiv-
ity

Y Discussed (meta-
bolic function)

Nelson et al. 2012 [39] fecal Elephant seal and 
Leopard seal

Higher in captiv-
ity

Y Discussed (immune 
function)

Ning et al. 2020 [88] fecal Amur Tiger Higher in captiv-
ity

Y Assessed (func-
tional metagenom-
ics—metabolic)

Prabhu et al. 2020 [131] fecal Gaur No difference Y Assessed (predicted 
metabolic and 
immune func-
tions—PICRUSt/
KEGG)

Rosshart et al. 2017 [79] ileocecal House mouse Not reported Y Assessed (trans-
plant experiment 
with immune 
readouts)

Schwab et al. 2011 [132] fecal Grizzly bear Not reported Y Discussed (immune 
function)

Sun et al. 2019 [74] fecal Alpine musk deer Not reported Y Assessed (func-
tional metagenom-
ics—metabolic)

Sun et al. 2019 [76] fecal Père David’s deer No difference Y Assessed (predicted 
metabolic func-
tions—PICRUSt/
KEGG)

Tang et al. 2020 [133] fecal Giant panda Lower in captivity Y Discussed (meta-
bolic and immune 
function)
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and wild states, and one showed significantly increased 
diversity in captivity. A recent meta-analysis of 23 com-
parative studies lends further support to this ambiguity, 
documenting no systematic effects of captivity on gut 
microbial diversity [43].

Similar heterogeneity has been observed in com-
parative analyses of microbial community composition. 
With few exceptions, comparative studies typically show 
that overall microbial composition differs significantly 
between captive and wild populations (Table  1). Yet, 

Table 1 (continued)

Author Year Citation Sample type Species Difference 
in captive/
wild microbial 
diversity?

Difference 
in captive/
wild microbial 
composition?

Functional 
implications 
discussed?

Tsukayama et al. 2018 [40] fecal Kinda and 
grayfoot chacma 
baboon

Higher in captiv-
ity

Y Assessed (func-
tional metagenom-
ics—abx resistance)

Uenishi et al. 2007 [134] fecal Chimpanzee Not reported Y Discussed (meta-
bolic function)

Wasimuddin et al. 2017 [135] fecal Cheetah No difference Y Assessed (predicted 
metabolic and 
immune func-
tions—PICRUSt/
KEGG)

Xiao et al. 2019 [136] fecal 6 bat species Higher in captiv-
ity

Did not compare Assessed (predicted 
metabolic func-
tions—PICRUSt/
KEGG)

Yan et al. 2021 [9] fecal Pangolin Higher in captiv-
ity

Y Not discussed

Birds Oliveira et al. 2020 [37] fecal Various raptor 
species

No difference Y Not discussed

San Juan et al. 2021 [137] fecal Brown kiwi Lower in captivity Y Not discussed

Scupham et al. 2008 [138] cecal Turkey No difference Y Discussed (meta-
bolic function)

Ushida et al. 2016 [6] cecal Japanese and 
Svalbard rock 
ptarmigan

Not reported Y Discussed (meta-
bolic function)

Wienemann et al. 2011 [36] cecal Capercaillie Lower in captivity Y Discussed (meta-
bolic function)

Xenoulis et al. 2010 [41] cloacal 3 parrot species Higher in captiv-
ity

Y Not discussed

Xie et al. 2016 [139] fecal Red-crowned 
crane

Higher in captiv-
ity

Y Discussed (immune 
function)

Reptiles Campos et al. 2018 [140] fecal and rectal Green turtle No difference N Discussed (meta-
bolic function)

Garcia-De la Pena 
et al.

2019 [141] fecal Bolson tortoise No difference Y Discussed (meta-
bolic function)

Sandri et al. 2020 [142] fecal Aldabra giant 
tortoise

No difference Y Discussed (meta-
bolic function)

Tang et al. 2020 [143] fecal Crocodile lizard Higher in captiv-
ity

Y Assessed (predicted 
metabolic func-
tions—PICRUSt/
KEGG)

Amphibians Tong et al. 2019 [144] intestinal Dybowski’s 
brown frog

No difference Y Assessed (predicted 
metabolic and 
immune func-
tions—PICRUSt/
KEGG)

Included is whether the paper reported a difference in microbial diversity and microbial composition, as well as whether functional implications of these differences 
were discussed or assessed. Papers were found with a directed review of existing literature including a Google Scholar search and consulting references cited in 
each paper collected. We retained only those studies which include gut microbiome measurements of at least one population of captive and one population of wild 
vertebrates
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there is no apparent consistency across host species as to 
whether certain bacterial taxa are enriched or depleted in 
captivity. While it is difficult to compare papers in which 
only a single host species was sampled because of differ-
ences in study design and data analysis, there are a few 
studies that have looked at microbial composition in sev-
eral captive species at once. In primates, two studies have 
documented a convergence toward human-like microbi-
omes in captivity [44, 45]. The 41-species comparison by 
McKenzie et al. documented no convergence and noted 
variable shifts in the relative abundance of bacterial 
phyla between host genera [42]. Finally, in a study involv-
ing multiple lemur species, Greene et al. observed cases 
where one or the other of the prominent bacterial genera 
Bacteroides and Prevotella increased in captivity depend-
ing on the dietary strategy of the host [20].

Beyond comparative work, there is limited data 
tracking the trajectory of microbial change in individ-
ual animals moved into captivity from the wild. Here 
too, though, variable microbial responses to captivity 
have been observed between host species (Table  2). 
Findings are inconsistent as to whether gut micro-
bial diversity increases or decreases when animals are 
brought into captivity as well as how community com-
position changes. For example, Kohl et al. transplanted 
two closely related species of woodrats from the wild 
to captivity and noted striking differences between 
the species in the magnitude that microbial diver-
sity decreased, as well as opposing trends in the rela-
tive abundance of bacteria in the phyla Proteobacteria 
and Firmicutes  [19]. The gut microbiome can respond 

quickly upon introduction to captivity—for example 
Kohl and Dearing documented compositional changes 
in captive woodrats beginning within two weeks of cap-
ture [46]—but in some cases wild microbiome char-
acteristics last much longer. A large proportion of the 
wild microbiome in rodents and lizards is retained in 
captivity through at least several months [19, 46, 47], 
and wild mouse  microbial signatures can be transmit-
ted through at least 10 generations of captive breeding 
in a laboratory facility [48].

A few researchers have conducted the inverse trans-
plant experiment, tracking the microbiome as captive 
animals are reintroduced to the wild (Table  3). These 
studies provide some evidence that the captive gut 
microbiome shifts back to resemble the wild gut microbi-
ome after reintroduction and can do so on the timescale 
of days to weeks [e.g. 49–51]. But, the observed shift back 
towards a wild microbiome may not completely erase 
microbial signatures of an animal’s captive origin, as seen 
in Przewalski’s horses even after 10  years post-release 
[22]. It is worth noting compositional shifts following 
reintroduction are likely highly dependent on the envi-
ronment to which animals are transplanted. In addition 
to moving animals from captivity to the wild, Chong et al. 
transplanted Tasmanian Devils from one wild location to 
another and saw a compositional shift towards a microbi-
ome that resembled native Tasmanian Devils of the new 
location [50]. The lack of a universal “wild” microbiome, 
even for a single species, is ubiquitous and logical given 
findings that some gut bacteria may be geographically 
restricted or fluctuate seasonally [30, 52–54].

Table 2 Papers comparing gut microbiota before and after experimental transplantation from the wild to captivity

Included is whether the paper reported an increase or decrease in microbial diversity and microbial composition, as well as whether functional implications of these 
differences were discussed or assessed. Papers were found with a directed review of existing literature including a Google Scholar search and consulting references 
cited in each paper collected. We retained only those studies which include a wild population brought into captivity within a single lifetime

Author Year Citation Sample type Species Difference 
in captive/
wild microbial 
diversity?

Difference 
in captive/
wild microbial 
composition?

Functional 
implications 
discussed?

Mammals Edenborough 
et al.

2020 [145] Fecal Angolan free-
tailed bat

Higher in captivity Y Not discussed

Kohl and Dearing 2014 [46] Fecal Desert woodrat No difference N Not discussed

Kohl et al. 2014 [19] Fecal White-throated 
and Stephen’s 
woodrat

Lower in captivity Y Assessed (meta-
bolic function—
monitored ability to 
digest natural diet)

Schmidt et al. 2019 [146] Fecal Deer mouse Lower in captivity Y Discussed (meta-
bolic function)

Other Dhanasiri et al. 2010 [147] mid and 
posterior large 
intestine

Atlantic cod No difference Y Discussed (immune 
function)

Kohl et al. 2017 [47] Fecal 3 lizard species No difference Y Discussed (meta-
bolic function)
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What drives gut microbiome changes in captivity?
While it is clear that transitioning between wild and cap-
tive conditions can elicit changes to the gut microbiome, 
the ecological factors altered under captivity that  spe-
cifically cause microbiome shifts often remain unspeci-
fied. Captive diets can vary widely from natural diets [3, 
55], and diet has been shown to have a strong influence 
over gut microbial composition in captive animals [21, 
31, 51, 56]. Even minor changes in diet can lead to shifts 
in microbial composition, as evidenced in captive sifa-
kas [57]. Environmental conditions beyond diet can also 
matter, with one study demonstrating that rehousing lab 
mice in a room with altered temperature and humidity, 
but the same diet, resulted in significant changes in gut 
microbial composition [49]. Additionally, microbial dis-
persal from abiotic environmental substrates (water, soil, 
plants, etc.), as well as from contact with conspecifics or 
other species (including humans), can influence the gut 
microbiome of captive animals and can vary between 
captive facilities [58]. Komodo dragons, for example, 
harbor gut microbes that are also present in their enclo-
sures [59], while human handling has been implicated in 
the spread of microbes between mouse enclosures [48]. 
Animal social groups have a strong influence on gut 
microbial composition in the wild, likely affecting the 
microbiome by transferring bacteria between individu-
als through physical contact among social networks [e.g. 
60–62]. It is reasonable to expect similar social dynamics 
transmit microbes among captive populations, although, 
beyond studies of cohousing [e.g. 63, 64], this is rarely 
explicitly considered.

It must be noted that diet and environmental exposures 
can be tightly linked, especially in wild environments, 
making it challenging to disentangle their microbial 

impacts. Diet has the potential to have both a probiotic 
and prebiotic influence on the microbiome as it exposes 
animals to environmental microbes in addition to provid-
ing direct substrates for bacterial growth [52, 65]. Animal 
diets also often vary as environmental conditions change. 
One study, for example, saw a strong effect of the amount 
of outdoor exposure on changes to the gut microbiome 
of colobine primates, but it could not be determined 
whether this was a result of the animals being exposed to 
new environmental microbes or eating a greater diversity 
of foliage [55].

Interaction with humans introduces additional stress-
ors unique to the captive environment that can influence 
the microbiome. Most notably, administration of antibi-
otics reduces the natural flora of the gut and may even 
compound the effects of captivity by quickly removing 
large portions of the wild microbiota [66]. Isolation from 
natural pathogens like helminths through anthelminthic 
medicine or increased hygiene can induce changes to the 
microbiome by affecting the immune system [67, 68]. 
Additionally, direct physical interactions with humans, 
such as keepers or visitors, could both directly introduce 
human-associated microbes [44, 45] and cause stress, 
which itself can induce shifts in microbial composition 
[e.g. 69, 70].

Do gut microbial compositional changes in captivity affect 
microbiome function or host health? If so, how?
While the reviewed studies clearly show that captivity 
can affect the composition and diversity of the gut micro-
biome, characterizing these two metrics is insufficient 
to determine whether the gut microbiome plays a role 
in captive animal health as they do not give insight into 
whether bacterial functions change [71]. To date, there 

Table 3 Papers comparing gut microbiota before and after experimental transplantation from captivity to the wild

Included is whether the paper reported an increase or decrease in microbial diversity and microbial composition, as well as whether functional implications of these 
differences were discussed or assessed. Papers were found with a directed review of existing literature including a Google Scholar search and consulting references 
cited in each paper collected. We retained only those studies which include a captive population released into the wild within a single lifetime

Author Year Citation Sample type Species Difference in 
captive/wild 
microbial diversity?

Difference 
in captive/
wild microbial 
composition?

Functional 
implications 
discussed?

Mammals Bar et al. 2020 [49] Fecal House mouse Lower in captivity Y Discussed (immune 
function)

Chong et al. 2019 [50] Fecal Tasmanian devil Lower in captivity Y Discussed (metabolic 
function)

Leeuwen et al. 2020 [51] Fecal Deer mouse No difference Y Discussed (neurological 
function)

Schmidt et al. 2019 [146] Fecal Deer mouse Lower in captivity Y Discussed (metabolic 
function)

Yao et al. 2019 [75] Fecal Giant panda Lower in captivity Y Assessed (functional 
metagenomics)
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have been few studies that compare functional capacity 
of the microbiome in the wild and in captivity in addition 
to composition. Of these, most have predicted function-
ality using reference genomes related to taxa represented 
in 16S rRNA gene sequencing data [e.g. 44, 72, 73] and a 
few have conducted functional metagenomic sequencing 
[e.g. 38, 40, 74, 75]. Most show that predicted function 
differs between captive and wild microbiomes (but see 
[76] for a case in which no functional difference was pre-
dicted) and argue the altered functional capacity of the 
bacterial community may have a realized impact on host 
biology. However, altered functional capacity does not 
necessarily indicate changes in bacterial activity or host 
physiology [77].

There have been some instances, though, where micro-
bial composition has been more directly tied to health 
outcome in captive animals. A handful of studies have 
correlated gut microbiome composition to specific dis-
ease phenotypes in captive animals, including chronic 
wasting disease in deer [78], gastrointestinal disease in 
wolves [31], and iron overload disorder in rhinoceroses 
[7]. That work provides support for a functional connec-
tion between microbial composition and health conse-
quences in at least some contexts. Bolstering the idea that 
the wild microbiome specifically can be beneficial, fecal 
microbiota transplantation (FMT) of a wild microbiota 
community has been used in mammals to successfully 
reduce inflammation and improve survival against viral 
disease [79] and expand dietary niche [80], and probiotic 
supplementation improved body weight and fecal qual-
ity in cheetahs [81]. In most cases, however, the potential 
for microbial manipulations to lead to favorable health 
outcomes have not been explicitly tested, so the gener-
alizability of these findings remains unknown. Microbial 
manipulations in captive livestock have also been used 
to try to address health concerns, although the mixed 
success of FMTs and dietary interventions in agricul-
tural contexts underscores the likelihood that an altered 
microbiota will not cure all ills [82–85].

There are alternative interpretations of microbial dif-
ferences between wild and captive animals that do not 
presume the captive microbiome is less favorable [e.g. 35, 
86–88] or potentially detrimental [1]; these are important 
to consider in the absence of species-specific experimen-
tal evidence. First, microbiomes may have changed to 
match the new captive environment in a beneficial man-
ner [89]. For example, natural selection could promote a 
microbiome better able to digest the captive diet while 
potentially reducing the animal’s capacity to digest a (no 
longer relevant) wild diet [21, 90]. Captive microbiome 
contributions to promoting growth or mitigating stress-
ors may not fully outweigh the costs of a captive lifestyle, 
so captive animals may still be found to have worse health 

than wild individuals. Still, in these cases a return of a 
wild or ancestral microbiome to a captive animal would 
further diminish health in captivity. Second, microbiome 
changes under captivity may be constrained by tradeoffs 
such that the increase in some microbial functions, such 
as those relevant to captive environments, lead to the 
decrease or loss of other functions [77]. If so, re-estab-
lishing a wild microbiome may improve some aspects of 
health while reducing others. Third, the captive micro-
biome may be caused by, rather than causative of, poor 
health, in which case treating the microbiome would 
not alter the underlying condition. Finally, changes in 
the microbiome under captivity may primarily be neu-
tral given functional redundancy of gut microbiota [91]. 
Given the scope of the current evidence that exists, we 
cannot presume to know what effect the captive microbi-
ome has on the health of any given species. To ensure our 
understanding is sufficient for conservation applications, 
more research must be done to indicate under which cir-
cumstances and for which species microbial manipula-
tions can improve health.

Future directions
There is no single answer to the question of whether 
the gut microbiome matters for host health in captivity 
in large part because there is no single captive microbi-
ome. The microbiome’s impact will be particular to host 
species, diet, external environment, conservation status, 
and  reintroduction plans, among many other factors 
that impact the gut microbiome and/or affect species 
health priorities. Insofar as there is a prospect of health-
relevant compositional and functional differences of the 
gut microbiome under captivity, we must identify when 
reconstituting a wild microbiome is most likely to be a 
suitable route for improving animal welfare and con-
servation. (Although, even absent demonstrated health 
benefits, there may be cases where reconstituting a wild 
microbiome is a worthwhile goal, for instance where 
it provides more ecologically realistic models for host-
microbe interaction research.)

Responsible applications of gut microbiome inter-
ventions to animal conservation practices will depend 
on knowing whether the captive microbiome is truly 
involved in modulating a given health concern. The gold 
standard causal evidence requires experimental micro-
biome manipulations in captive animals: changing the 
microbiome either through fecal transplants, antibiotics, 
or probiotics then measuring host phenotypes of inter-
est to assess whether existing health problems are ame-
liorated [28, 79–81, 92]. Similar experimental tests could 
be employed to assess whether microbial manipulations 
prior to reintroduction improve survival in the natu-
ral environment. Of course, experiments for observing 
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direct causality have many potential ethical and logistical 
limitations, particularly if concerning endangered spe-
cies, so may not be possible in many cases.

Prior to proposing microbiome manipulations (either 
for experimental research or treatment purposes), alter-
nate studies which go beyond documenting microbi-
ome differences but not as far as microbial treatment 
could provide better corroboration of captivity-mediated 
microbiome health effects. Altering captive conditions 
to make the microbiome more wild-like (e.g., restoring 
diet complexity, increasing exposure to other individuals 
or species, diversifying environmental substrates, limit-
ing handling; see Fig. 1) then tracking microbial and host 
health responses could identify beneficial wild-associated 
taxa or other critical ecological drivers of the captive 
microbiome.

If experiments in the species of interest are not possi-
ble, alternatives include gnotobiotic or in vitro research. 
In gnotobiotic studies, gut microbiota from different 
donors, such as wild and captive individuals, are trans-
planted into germ-free animals (often mice) whose phe-
notypes are then compared [93, 94]. These experiments 
have their own limitations including expense and limited 
facilities, as well as the reduced biological realism that 
comes from measuring a microbiome’s effect in a mis-
matched host [95], but they could be particularly use-
ful for studying the microbiome of endangered species. 

Similarly, in  vitro culturing experiments could provide 
insight into microbial functioning of wild and captive gut 
microbiomes when live animal work is infeasible. Given 
that in vitro studies remove host biology, they cannot be 
used to relate gut microbial composition to host pheno-
type. However, they could allow researchers to character-
ize whole microbial communities under varying stimuli 
and measure functional responses relevant to host biol-
ogy in a relatively cheap and more high-throughput man-
ner [96, 97]. They may prove especially useful for testing 
potential manipulations (e.g., diet, microbial exposure) 
for promoting a shift from a captive to more wild-like 
microbiota.

More comprehensive observational studies that tie 
microbiome composition to host phenotype data in wild 
and captive settings could prioritize host species or health 
conditions which warrant further study [e.g. 7, 9, 31, 78]. 
Correlations between health status and the microbiome 
would not distinguish between cases where the captive 
microbiome was responsible for altered health and ones 
where it is a response to the unhealthy state or is curbing 
potentially worse states. They would, however, advance 
the field beyond characterizing the microbiome in wild 
and captive states and serve for hypothesis-generation to 
motivate future experimental work. Correlative studies 
have the benefit of being less invasive and lower cost than 
direct manipulations but do require a robust sample set. 

Fig. 1 Possible interventions for manipulating the captive animal microbiome. A Direct animal manipulations include administration of antibiotics, 
microbiome transplants, and physical handling. B Manipulations targeting environmental exposures include presence of other animals (other 
species, conspecifics, and recently-wild individuals), diet and food processing, water source, cleaning practices, visitor exposure, climate, and soil, 
plants, and their associated microbes. Icons have been adapted under a Creative Commons license (https:// creat iveco mmons. org/ licen ses/ by/3. 0/) 
at phylopic.org and thenounproject.com. The hand image was sourced from clipart-library.com under a Personal Use license

https://creativecommons.org/licenses/by/3.0/
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In addition to collecting new data, researchers could lev-
erage banked fecal samples and existing zoo or sanctuary 
records or larger databases like the Zoological Informa-
tion Management System (ZIMS), Animal Records Keep-
ing System (ARKS), Single Population Animal Records 
Keeping System (SPARKS), and Medical Animal Records 
Keeping System (MedARKS) [98].

Regardless of the approach chosen for a future study, 
choosing appropriate phenotypic markers to assess host 
health will be critical. Previous research on microbiome 
mediated health impacts has primarily been conducted 
in animal models or humans [e.g. 99–101], so common 
markers and their benchmarks may not be entirely appli-
cable to wild species or wild contexts (but see [102, 103] 
for biomarkers that may be applicable to wild animals). 
While transcriptomic or metabolomic data are frequently 
collected in biomedical research and can illuminate 
molecular mechanism [77], data at that scale is often 
unnecessary for conservation work. Given the high cost 
and technical demands of “omics” measurements, alter-
natives such as stool consistency, parasitology, body size, 
or physical condition may be more appropriate. Indeed, 
some of these have been previously used to measure 
health phenotypes in wild or captive species [e.g. 31, 
104–106], although not always with explicit ties to the 
microbiome. Pathological biomarkers targeted towards 
a particular health concern, for instance diagnosing or 
determining the severity of gastrointestinal issues, infec-
tion status, or neurological and stress disorders [e.g. 9, 
107, 108], could be more informative but potentially 
more invasive or costly. Ultimately, markers should be 
chosen based on the species and health concern of focus, 
as well as the laboratory capabilities available. Further-
more, any research program studying the captive gut 
microbiome should be diligent about considering mul-
tiple axes of animal health when possible given the pos-
sibility for functional tradeoffs resulting from microbial 
compositional shifts [77].

Deciding how to implement these research strategies 
aimed at causation over correlation in studies of the cap-
tive gut microbiota will be highly dependent on logistical 
and scientific factors specific to a given research pro-
gram. Limited resources, including access to animals, 
may come up against conservation priorities and severely 
restrict researchers’ choices. Fortunately, the methods 
presented above offer a wide range of options that may 
allow scientists to do functionally relevant research on 
the captive animal microbiome even when economic or 
logistical limitations preclude direct microbial manipula-
tion experiments. Experts on specific animals will be best 
suited to decide which research strategies and pheno-
typic readouts will be most useful and feasible for achiev-
ing pressing conservation goals for the target species, 

as it is clear now that results will not be generalizable 
between taxa.

Once health links to the gut microbiome are identi-
fied for a given species, there are additional challenges 
in deciding whether and how to incorporate microbial 
manipulations into husbandry practices as this would 
require investments of both funding and labor at animal 
facilities. Again, species experts will be in the best posi-
tion to balance wellness and conservation goals with the 
costs and challenges of microbial manipulations—par-
ticularly if functional tradeoffs are present. For example, 
if the captive microbiome proves beneficial in captivity 
but harmful when animals are reintroduced, the short-
term wellbeing of an individual animal must be weighed 
against the long-term wellbeing of the species. To suc-
cessfully reintroduce animals to the wild may require 
pre-seeding a wild microbiome, or pre-seeding may be 
an unnecessary expense if functionality recovers when 
the microbiome reverts to a more wild-like state on its 
own [22, 49–51]. It is likely that certain manipulations 
will be more appropriate or more costly for some species 
than others, and institutions such as zoos that manage a 
wide variety of species  will likely need to employ a wide 
range of strategies to cope with this variation. Despite 
these challenges, the potential benefits of harnessing the 
influence of the gut microbiome to improve host health 
is undeniable and will certainly be a worthwhile research 
avenue for many species.

Conclusion
As more species are becoming impacted by threats such 
as climate change, human land use, and emerging infec-
tious diseases [109–112], finding new ways to improve 
animal welfare in captivity may be critical for species 
success through captive breeding and reintroduction 
programs. Much work has been done in this century to 
characterize the differences between gut microbial com-
position of captive animals and their wild counterparts. 
As a whole, it is clear that there is enormous variation in 
how species’ gut microbes respond to the captive envi-
ronment. Thus, there will likely be variation in how the 
captive microbiome influences host health, preventing 
a one size fits all approach to managing animal health 
through the microbiome. Both captive microbiome 
research and eventual mitigation strategies will likely 
need to be handled on a species-by-species basis man-
aged by those who are most familiar with their particular 
biology, but in all cases they should include broader sur-
veys of health phenotypes that consider immune, behav-
ioral, and reproductive health in addition to metabolic 
health.

This complexity raises important questions for how 
the field should move forward, such as what species 
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should be prioritized for research and what aspects of 
host health should be optimized. For example, should we 
begin with species that are known to have poor health 
in captivity or with those that face the greatest extinc-
tion threats? And is it worth improving metabolic health 
in captivity if it comes at the cost of immune health or 
metabolic functioning in the wild? The answers to these 
questions will likely be influenced by logistical barri-
ers such as species availability and population sizes, but 
they merit careful consideration by scientists continuing 
captive microbiome research. As the field moves away 
from characterizing microbial composition and focuses 
more on linking microbial function to host phenotypes, 
it is crucial that researchers not only consider these ques-
tions, but acknowledge the limitations of their findings 
to avoid recommending widespread microbial manipula-
tions before their effects are fully understood.
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