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diets
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Abstract 

Background: Being part of fish’s natural diets, insects have become a practical alternative feed ingredient for aqua‑
culture. While nutritional values of insects have been extensively studied in various fish species, their impact on the 
fish microbiota remains to be fully explored. In an 8‑week freshwater feeding trial, Atlantic salmon (Salmo salar) were 
fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) 
larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal 
intestine were collected and profiled along with feed and water samples.

Results: The insect meal diet markedly modulated the salmon intestinal microbiota. Salmon fed the insect meal 
diet showed similar or lower alpha‑diversity indices in the digesta but higher alpha‑diversity indices in the mucosa. 
A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect 
meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intes‑
tine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associ‑
ated with the diet effects were also present in the feeds.

Conclusions: We conclude that salmon fed the insect meal diets show consistent changes in the intestinal micro‑
biota. The next challenge is to evaluate the extent to which these alterations are attributable to feed microbiota and 
dietary nutrients, and what these changes mean for fish physiology and health.
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Background
The global population is projected to reach 9.7 billion 
in 2050 [1], requiring an increase in the food supply by 
25–70% [2]. To fulfil this demand, the food production 
sector must minimize resource input and maximize 
nutritional outputs for human consumption. Atlantic 
salmon, Salmo salar, is the most produced marine fish 
species and one of the most economically important 
farmed fish worldwide [3]. Human-edible plant feed-
stuffs are the main ingredients used in modern salmon 

feeds (~ 70%) [4]. To secure sustainable developments, 
salmon farming needs to decrease its dependency on 
human-edible feedstuffs and incorporate unexploited 
feed resources in its raw material repertoire. So far, 
possible candidates include insects [5], macroalgae 
[6], and single-cell organisms such as bacteria, yeasts, 
and microalgae [7]. In terms of sustainability, insects 
are a promising candidate. They possess a remark-
able capacity to upgrade low-quality organic materials, 
require minimal water and cultivable land, and emit 
little greenhouse gases [8]. One of the insect species 
with the potential as alternative protein sources for 
salmon aquaculture is black soldier fly (Hermetia illu-
cens), which is produced at an industrial scale for its 
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favorable amino acid profile [9]. Feed conversion ratio, 
growth performance, fish health, sustainability and 
price/availability are primary concerns when evaluating 
the performance of alternative feed ingredients. While 
the nutritional value of black soldier fly larvae meal 
has been extensively evaluated in various fish species, 
including Atlantic salmon [10–16], its influence on fish 
health remains largely unexplored.

The intestine is the main organ directly exposed to the 
diet and of pivotal importance for the growth, develop-
ment, and protection against pathogens. A well-func-
tioning, healthy intestine is the key to convert feed into 
fish biomass efficiently. It is now well established that 
the intestinal microbiota is, in various ways, closely con-
nected to intestinal function and health [17–21]. Diet is 
arguably one of the most important environmental fac-
tors shaping intestinal microbiota [22–24]. Different die-
tary components may selectively induce compositional 
and functional alterations of the intestinal microbiota, 
which in turn could inflict important implications on the 
host health and disease resistance [19, 24–26].

Characterizing the response of intestinal microbiota to 
dietary shifts and its associations with host responses is 
a critical step towards identifying key microbial clades 
for promoting fish health and welfare. The main aims of 
the work presented herein were (1) to compare intestinal 
microbiota of Atlantic salmon fed a commercially rel-
evant reference diet and an insect meal-based test diet, 
and (2) to identify potential associations between intes-
tinal microbial clades and host responses. This work 
was part of a larger study consisting of a freshwater and 
a seawater feeding trial. The present work reports the 
intestinal microbiota in freshwater Atlantic salmon fed 
an insect meal diet containing 60% black soldier fly larvae 
meal for 8 weeks.

Results
Published results on the growth performance, intestinal 
histomorphology, and gene expression are summarized 
as the following [27, 28]. In brief, there was little evidence 
that the insect meal diet negatively affected salmon’s 
feed utilization or growth performance. Histopathologi-
cal examination showed excessive accumulation of lipids 
(steatosis) in the proximal intestine in both diet groups, 
but it was less severe in salmon fed the insect meal diet. 
The expression of the lipid droplet marker gene, plin2, 
supported these histological findings. Immune and bar-
rier-function gene expression profiles were generally not 
affected by diet. However, salmon fed the insect meal 
diet showed increased expression of genes indicative of 
immune tolerance (foxp3), stress response (hsp70), and 
detoxification activity (cpy1a1).

Taxonomic analysis
The observed taxonomic composition of the mock 
standard is shown in Additional file 2: Figure S1. Con-
taminants identified in the negative control samples are 
shown in Additional file  1: Table  S1. The top 10 most 
abundant bacterial genera across all the samples are 
shown in Fig. 1. At visual observation, the microbiota in 
the digesta collected from the two intestinal segments 
of the salmon fed the reference diet appeared homog-
enous, but more heterogeneous in the sampled mucosa. 
Dominant genera in the reference diet group included 
Lactobacillus, unclassified Peptostreptococcaceae, and 
Peptostreptococcus. The microbiota in salmon fed the 
insect meal diet differed greatly from that of the ref-
erence diet fed fish, and the difference between the 
results of the digesta and mucosa appeared less than 
for fish fed the reference diet. Dominant genera in the 
insect meal diet group included Oceanobacillus, Bacil-
lus, Enterococcus, Ornithinibacillus, unclassified Bacil-
laceae, and Corynebacterium 1. The microbiota in the 
intestine closely resembled that of the feed but was 
distinct from the water microbiota. In agreement with 
this, we found that the ASV overlap between the intes-
tine and feed was much higher than that between the 
intestine and water (Fig. 2).

Alpha‑diversity
Salmon fed the insect meal diet showed similar or lower 
alpha-diversity indices in the digesta but higher alpha-
diversity indices in the mucosa (Fig. 3). In the digesta, 
regardless of the intestinal segment, salmon fed the 
insect meal diet showed significantly lower Faith’s phy-
logenetic diversity but similar Shannon’s index. In the 
mucosa, however, the Faith’s phylogenetic diversity and 
Shannon’s index were significantly higher in salmon fed 
the insect meal diet in both intestinal segments.

Compared with the intestinal mucosal samples, the 
water samples showed higher, albeit not significant, 
Faith’s phylogenetic diversity but significantly lower 
Shannon’s index (Additional file 2: Figure S2).

Beta‑diversity
In the digesta, the PERMANOVA showed a significant 
diet but not a significant intestinal segment effect on 
the beta-diversity, and the interaction between these 
terms was significant (Fig. 4a; Table 1). The diet effect 
on the beta-diversity was significant in both intestinal 
segments, but it was stronger in the distal intestine 
than in the proximal intestine. The PERMDISP showed 
that, in both intestinal segments, differences in the 
multivariate dispersion between the diet groups were 
not significant (Additional file 2: Figure S3a).
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Fig. 1 Consistent changes in the taxonomic composition of intestinal microbiota from salmon fed the insect meal diet. Note that feed microbiota 
shows close resemblance to that observed in the intestine whereas water microbiota is very distinct from the intestinal microbiota. Only the top 
10 most abundant bacterial genera are displayed in the plot whereas the other taxa are shown as “Others”. Taxa not assigned at the genus level are 
prepended with letters indicating whether the taxonomic assignment was made at the order (o_) or family (f_) level. Abbreviations: REF, reference 
diet; IM, insect meal diet; PI, proximal intestine; DI, distal intestine

Fig. 2 Higher microbial overlap between the intestinal mucosa and feeds (a) than that between the intestinal mucosa and water (b). In each 
panel, the number of shared ASVs is shown on the left whereas the relative abundance of shared ASVs in the intestinal mucosa is shown on the 
right. To reduce the influence of rare ASVs and differences in the sequencing depth, only ASVs with a minimum relative abundance of 0.05% were 
considered as present in a sample. Abbreviations: REF, reference diet; IM, insect meal diet; PIM, proximal intestine mucosa; DIM, distal intestine 
mucosa
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In the mucosa, the PERMANOVA showed a signifi-
cant diet but not a significant intestinal segment effect 
on the beta-diversity, and the interaction between these 
terms was not significant (Fig.  4b; Table  1). The PER-
MDISP showed that differences in the multivariate dis-
persion between the diet groups were not significant at 
the tank or diet level (Additional file 2: Figure S3b).

The PERMANOVA showed that the water microbiota 
was significantly different from the intestinal mucosal 
microbiota (p = 0.003). Differences in the multivariate 
dispersion (PERMDISP) between the water and intes-
tinal mucosal samples were not significant (p = 0.140).

Association analysis
Significant associations between sample metadata and 
bacterial genera in the digesta and mucosa are shown 
in Figs.  5 and 6, respectively. In total, 89 and 35 taxa 
were associated with the diet effect in the digesta and 
mucosa, respectively. Collectively, 32 taxa were asso-
ciated with the diet effect in both digesta and mucosa. 
Among these taxa, bacterial genera enriched in salmon 
fed the reference diet consisted of unclassified Peptos-
treptococcaceae, Peptostreptococcus, Photobacterium, 
and lactic acid bacteria including Lactobacillus, Lac-
tococcus, Leuconostoc, Pediococcus, and Streptococcus 

Fig. 3 Salmon fed the insect meal diet showed similar or lower alpha‑diversity indices in the digesta but higher alpha‑diversity indices in the 
mucosa. The error bars denote standard deviations of the means. The p values of the main effects and their interaction are displayed on the top of 
each subplot. Abbreviations: REF, reference diet; IM, insect meal diet; PI, proximal intestine; DI, distal intestine; PD, phylogenetic diversity
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(partially illustrated in Figs.  5b, 6b). In contrast, bac-
terial genera enriched in salmon fed the insect meal 
diet comprised Actinomyces, unclassified Bacillales, 
unclassified Bacillaceae, Bacillus, unclassified Beu-
tenbergiaceae, Brevibacterium, Cellulosimicrobium, 
Clostridium sensu stricto 1, unclassified Corynebac-
teriaceae, unclassified Enterococcaceae, Enterococcus, 
Exiguobacterium, Globicatella, Gracilibacillus, unclas-
sified Lactobacillales, Lysinibacillus, Macrococcus, 
Microbacterium, Oceanobacillus, Ornithinibacillus, 
Paenibacillus, unclassified Planococcaceae, unclassified 
RsaHF231 and Savagea (partially illustrated in Figs. 5c, 
6c). Regarding associations between bacterial genera 
and host gene expressions, the relative abundance of 
Paenibacillus and Streptococcus in the mucosa showed 
positive correlations with the expression level of foxp3, 
the master transcription factor of regulatory T-cells, in 
the intestine (partially illustrated in Fig. 6d). Addition-
ally, the relative abundance of unclassified RsaHF231 in 
the digesta, and the relative abundance of unclassified 
Corynebacteriaceae, Enterococcus, and Oceanobacillus 
in the mucosa, showed negative correlations with the 
expression level of plin2, a surface marker of lipid drop-
lets, in the intestine (partially illustrated in Fig. 6e).

Discussion
We found that the insect meal diet markedly modulated 
the Atlantic salmon intestinal microbiota. A group of 
bacterial genera, dominated by members of the Bacil-
laceae family, was enriched in salmon fed the insect meal 
diet. These results confirm our previous findings in a sea-
water feeding trial [29]. We also found that microbiota in 
the intestine closely resembled that of the feeds. Notably, 

bacterial genera associated with the diet effects were pre-
sent in the feeds as well.

Insect meal diet markedly modulated the intestinal 
microbiota
Higher microbial diversity has been reported in the 
intestinal digesta and mucosa of salmonids fed diets 
containing black soldier fly larvae meal [29–32]. In 
the present study, however, this was the case for the 
mucosa but not for the digesta. Our observation that 
a particular group of bacterial genera, dominated by 
members of the Bacillaceae family, was enriched in 
salmon fed the insect meal diet is in line with findings 
in our previous seawater trial, wherein salmon were 
fed an insect meal diet containing 15% black soldier 
fly larvae meal for 16  weeks [29]. Among these bacte-
rial genera, Actinomyces, Bacillus, Brevibacterium, 
Corynebacterium 1, Enterococcus, Oceanobacillus, and 
Paenibacillus were also reported to be enriched in rain-
bow trout fed diets containing 15% or 30% black soldier 
fly larvae meal [31–33]. Similar observations have been 
made in Siberian sturgeon (Acipenser baerii) fed a diet 
containing 15% black soldier fly larvae meal, inducing 
higher absolute abundances of Bacillus and Enterococ-
cus [34]. In this latter study, fluorescence in situ hybrid-
ization (FISH) technique was used for the bacteria 
quantification.

Feed microbiota and dietary nutrients may explain the 
observed diet effects. We found evidence for the former, 
because bacterial genera associated with the diet effects 
were present in the feed samples. Given the hydrother-
mal treatments during the extrusion step in the feed 
production, the viability of feed-associated microbes 

Fig. 4 The insect meal diet markedly modulated the salmon intestinal microbiota in both digesta (a) and mucosa (b), irrespective of intestinal 
segments. The dimensionality reduction was performed using a compositional beta‑diversity metric called robust Aitchison PCA and visualized by 
the EMPeror [90]. The height‑to‑width ratio of the PCoA plot was set to reflect the ratio between the corresponding eigenvalues as recommended 
[91]. Abbreviations: REF, reference diet; IM, insect meal diet; PID, proximal intestine digesta; DID, distal intestine digesta; PIM, proximal intestine 
mucosa; DIM, distal intestine mucosa; PCo, principal coordinate
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is expected to be low. As sequencing-based methods 
cannot differentiate between active (living) and inac-
tive (dormant/dead) microbes, additional work will be 
needed to elucidate the extent to which the observed 
diet effects are attributable to the carry-over of inactive 
microbes and colonization of active microbes from feeds. 
Methods like viability PCR and RNA sequencing can be 
applied for such experiments [35]. Changes in the feed 
components may have also contributed to the observed 
diet effects. For instance, dietary inclusion of soy pro-
teins was suggested to associate with increased relative 
abundance of lactic acid bacteria in the salmon intestine 
[36]. Thus, the replacement of soy protein concentrate 
with insect meal may explain the reduction in lactic acid 
bacteria in salmon fed the insect meal diet. On the other 
hand, nutrients from the insect meal, such as chitin, may 
have also promoted the growth of certain bacterial taxa 
including Actinomyces and Bacillus. Actinomyces species 
are often identified as active chitin degraders, showing 
enhanced growth and activity upon chitin addition [37]. 
Many Bacillus species are well-known as chitin degrad-
ers [38]. Bacillus was one of the predominant taxa in the 
intestinal mucosa of salmon fed a chitin-supplemented 
diet, displaying the highest in vitro chitinase activity [39]. 
The latter hypothesis can be tested by supplementing 
insect meal-specific nutrients to the same basal diet and 

sequencing the intestinal microbiota of salmon fed these 
diets.

Microbiota was similar between intestinal segments
Like its mammalian counterparts [40, 41], the salmon 
intestinal microbiota is also spatially heterogeneous in its 
composition [42]. Specifically, microbial communities dif-
fer along the intestinal tract and vary substantially between 
digesta and mucosa within the same intestinal segment. 
Due to the batch effects between sequencing runs, we 
could not directly compare microbial communities in 
the digesta and mucosa. Nonetheless, our study suggests 
that conclusions on the diet effect can be different when 
evaluated using digesta or mucosa samples alone. This is 
supported by our results showing that diet effects on the 
alpha-diversity and differential abundance testing were 
quite different when evaluated independently using digesta 
or mucosa samples. In contrast, our comparative analy-
sis showed that microbiota variations between intestinal 
segments were neglectable in both digesta and mucosa. 
The diet effects were essentially the same when evaluated 
using samples from different intestinal segments. Taken 
together, these results suggest that it may be sufficient to 
collect digesta and mucosa samples from one intestinal 
segment (e.g., the distal intestine) when conducting a diet-
microbiota study in fish with limited resources.

Table 1 PERMANOVA and subsequent conditional contrasts

REF, reference diet; IM, insect meal diet; PI, proximal intestine; DI, distal intestine; NA, not applicable
a Monte Carlo p value

Source Main effects Interaction Conditional contrasts

Diet Segment REF‑PI versus IM‑PI REF‑DI versus IM‑DI REF‑PI versus 
REF‑DI

IM‑PI 
versus 
IM‑DI

Digesta F = 50.5,
p = 0.001

F = 0.481,
p = 0.503

F = 16.1,
p = 0.002

t = 4.30,
p = 0.001

t = 10.7,
p = 0.001

NA NA

Mucosa p = 0.001a F = 0.449,
p = 0.591

F = 6.04,
p = 0.059

NA NA NA NA

(See figure on next page.)
Fig. 5 Significant associations between sample metadata and microbial clades in the digesta. a Heatmap summarizing significant associations 
between sample metadata and microbial clades in the digesta. Color key: − log(q value) * sign(coefficient). Cells that denote significant 
associations are colored in red or blue and overlaid with a plus (+) or minus (−) sign that indicates the direction of association: Diet (+), higher 
relative abundance in salmon fed the insect meal diet; Segment (+), higher relative abundance in the distal intestine; foxp3 (+)/plin2 (+), positive 
correlation between microbial clade relative abundance and gene expression levels. b Representative taxa showing higher relative abundances 
in salmon fed the reference diet. c Representative taxa showing higher relative abundances in salmon fed the insect meal diet. The relative 
abundances of representative taxa in the feeds are shown as grey dots in b, c. As the number of taxa showing significant associations with diet was 
too high to be properly displayed on the heatmap, we filtered the results to keep those with a q value < 0.0001. Complete results are available in 
our accompanying R Markdown report (download our GitHub repository, https:// github. com/ yanxi anl/ Li_ AqFl1‑ Micro biota_ 2021, and open the 
file code/11_multivariable_association.html). Taxa not assigned at the genus level are prepended with letters indicating whether the taxonomic 
assignment was made at the phylum(p_), order (o_), or family (f_) level. REF, reference diet; IM, insect meal diet; PI, proximal intestine; DI, distal 
intestine; FDR, false discovery rate; N.not.zero, number of observations that are not zero

https://github.com/yanxianl/Li_AqFl1-Microbiota_2021
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Fig. 5 (See legend on previous page.)
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Microbial overlap was low between the intestine and water 
but high between the intestine and feeds
Water and feed are considered two environmental 
sources of microbiota which can be transferred to the fish 
intestine. In line with previous studies in salmon [43–45] 
and other fish species [46–48], we found that micro-
bial overlap between the intestine and water was low in 
the present study of salmon in freshwater. This may be 
explained by the fact that during their freshwater stage, 
salmon drink little water to accommodate osmoregula-
tion needs in a hypo-osmotic environment, which greatly 
limits the intake of microbes from the surrounding water 
environment. On the other hand, the microbial load in 
the tank water may be low as it was heavily filtered before 
supplied to the fish rearing system. The tank biofilm may 
be a better indicator of environmental microbiota [49] as 
it enriches microbes that naturally colonize the system. 
Sequencing both water and tank biofilm microbiota may 
provide better insights into interactions between the 
environmental microbiota and fish intestinal microbiota.

In contrast to the low microbial overlap between the 
intestine and water, we found a high microbial over-
lap between the intestine and feed. Microbial overlaps 
between the fish intestine and formulated feeds have 
been reported to be high [50, 51] and low [52–55] in 
the literature. As discussed earlier, the feed microbiota 
detected by amplicon sequencing may have primarily 
originated from inactive microbes. Therefore, feed micro-
biota can be a confounding factor of the observed diet 
effects. Given that the influence of feed microbiota on 
the observed diet effects is unequal across experimental 
groups as opposed to the water microbiota, we strongly 
recommend collecting feed samples when designing a 
sequencing-based, diet-microbiota study in fish.

Associations between microbial clades and host gene 
expressions
The close relationship between microbiota and the intes-
tinal immune system is well established [56]. Paenibacil-
lus are endospore-forming, facultative anaerobes well 

known as plant-growth promoters [57]. Metabolites 
produced by Paenibacillus have been reported to down-
regulate inflammatory response and increase regulatory 
T cell numbers in the intestine of Goto–Kakizaki rats, 
a spontaneous animal model of type 2 diabetes [58]. In 
accordance, we found that Paenibacillus was positively 
associated with the foxp3 expression, suggesting a puta-
tive link between the enrichment of Paenibacillus and 
increased expression of foxp3 in salmon fed the insect 
meal diet. Interaction between microbiota and lipid 
metabolism in the intestine has also been documented 
[59, 60]. Intestinal steatosis is a condition caused by 
excessive lipid accumulation within enterocytes. It repre-
sents a lipid transport disorder likely caused by deficien-
cies in nutrients required for the lipoprotein assembly 
[61–63]. Our findings, showing that several bacterial 
clades enriched in salmon fed the insect meal diet were 
negatively associated with the expression of lipid drop-
let marker plin2, indicate that the intestinal microbiota 
might also play a role in the development of intestinal 
steatosis. However, as microbiome data are sparse and 
noisy, association analysis is more meaningful when the 
sample size is much larger than it was in this study. Given 
the limited sample size, our results should be interpreted 
as exploratory. Further research is required to test if these 
bacterial taxa are indeed involved in the immune modu-
lation and lipid metabolism in the salmon intestine.

Conclusions
Our work showed that the insect meal diet markedly 
modulated the Atlantic salmon intestinal microbiota. 
Salmon fed the insect meal diet showed similar or lower 
alpha-diversity indices in the digesta but higher alpha-
diversity indices in the mucosa. A group of bacterial gen-
era, dominated by members of the Bacillaceae family, 
was enriched in salmon fed the insect meal diet. These 
results support our previous findings from a study of 
Atlantic salmon in seawater. We also found that micro-
biota in the intestine closely resembled that of the feed 
but was distinct from the water microbiota. Notably, 

Fig. 6 Significant associations between sample metadata and microbial clades in the mucosa. a Heatmap summarizing significant associations 
between sample metadata and microbial clades in the mucosa. Color key: − log(q value) *sign(coefficient). Cells that denote significant 
associations are colored in red or blue and overlaid with a plus (+) or minus (−) sign that indicates the direction of association: Diet (+), higher 
relative abundance in salmon fed the insect meal diet; Segment (+), higher relative abundance in the distal intestine; foxp3 (+)/plin2 (+), positive 
correlation between microbial clade relative abundance and gene expression levels. b Representative taxa showing higher relative abundances in 
salmon fed the reference diet. c Representative taxa showing higher relative abundances in salmon fed the insect meal diet. d Positive correlation 
between the relative abundance of Paenibacillus and foxp3 expression levels in the intestine. e Negative correlation between the relative 
abundance of Enterococcus and plin2 expression levels in the intestine. The relative abundances of representative taxa in the feeds are shown as 
grey dots in b, c. Taxa not assigned at the genus level are prepended with letters indicating whether the taxonomic assignment was made at the 
phylum(p_), order (o_), or family (f_) level. REF, reference diet; IM, insect meal diet; PI, proximal intestine; DI, distal intestine; FDR, false discovery rate; 
N.not.zero, number of observations that are not zero

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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bacterial genera associated with the diet effects were pre-
sent in the feed samples as well. We conclude that salmon 
fed the insect meal diets show consistent changes in the 
intestinal microbiota. The next challenge is to evaluate 
the extent to which these alterations are attributable to 
feed microbiota and dietary nutrients, and what these 
changes mean for fish physiology and health.

Methods
Diet and fish husbandry
An 8-week freshwater feeding trial was conducted at 
Cargill AquaNutrition experimental facility at Dirdal, 
Norway. A total of 800 Atlantic salmon with a mean 
initial body weight of 49  g (1.5  g SEM) were randomly 
assigned into 8 fiberglass tanks (450 L, 100 fish per tank) 
supplied with running freshwater. Quadruplicate tanks of 
fish were fed either a reference diet with a combination 
of fish meal, soy protein concentrate, and wheat gluten 
as protein sources, or an insect meal diet wherein 85% of 
the protein was supplied by black soldier fly larvae meal, 
replacing most of the fish meal and soy protein concen-
trate (Table 2). The black soldier fly larvae were grown on 
feed substrates containing organic waste streams. After 
eight days of growing, the larvae were harvested and par-
tially defatted before being dried and ground to make the 
insect meal (Protix Biosystems BV, Dongen, The Neth-
erlands). The diets were extruded, dried and vacuum 
coated with oils, producing feed pellets with a diameter 
size of 2 mm (Cargill, Dirdal, Norway). After the produc-
tion, the diets were shipped to the experimental facility 
and stored at − 20 °C until use. The fish were fed continu-
ously by automatic disk feeders under a photoperiod reg-
imen of 24 h daylight. Uneaten feeds were collected from 
tank outlets and registered daily. During the feeding trial, 
the water temperature was 13.7 ± 0.1  °C, and the dis-
solved oxygen concentration of the inlet and outlet water 
was 11.9 ± 1.2 and 8.7 ± 0.5  mg/L, respectively. Further 
details on the nutritional composition of the insect meal 
and diets have been reported elsewhere [28, 64].

Sample collection
At the termination of the feeding trial, 3 fish were ran-
domly taken from each tank (i.e., 12 fish per treatment), 
anesthetized with tricaine methanesulfonate (MS222®; 
Argent Chemical Laboratories, Redmond, WA, USA), 
and euthanized by a sharp blow to the head. After clean-
ing the exterior of each fish with 70% ethanol, the proxi-
mal and distal intestine were aseptically removed from 
the abdominal cavity, placed in sterile Petri dishes, and 
opened longitudinally. Only fish with digesta along the 
whole intestine were sampled to ensure that the intes-
tine had been exposed to the diets. The intestinal digesta 
was gently removed and transferred into a 1.5 mL sterile 

Eppendorf tube using a spatula and snap-frozen in liq-
uid  N2 for the profiling of digesta-associated intestinal 
microbiota. The intestinal tissue was rinsed in sterile 
phosphate-buffered saline 3 times to remove traces of 
remaining digesta. After rinsing, the intestinal tissue was 
cut into 3 pieces for histological evaluation (fixed in 4% 
phosphate-buffered formaldehyde solution for 24  h and 
transferred to 70% ethanol for storage), gene expression 
analysis (preserved in RNAlater solution and stored at 
− 20  °C), and profiling of mucosa-associated intestinal 
microbiota (snap-frozen in liquid  N2), respectively. In 
addition, 300  mL water was taken from each tank, pre-
filtered through a 0.8 μm sterile syringe filter (Acrodisc®, 
Pall Corporation, New York, USA), and vacuum-filtered 
onto a 0.2  μm sterile nitrocellulose filter (Nalgene™, 
Thermo Scientific, USA). The filter containing enriched 
bacteria was folded, placed into an 8 mL sterile tube, and 
snap-frozen in liquid  N2 to profile microbial community 
in water. The collection of microbiota samples was per-
formed near a gas burner to secure aseptic conditions. 
Tools were cleaned and decontaminated by 70% ethanol 
sprays and flaming before the subsequent sampling was 
carried out. The samples for microbiota profiling were 
transported in dry ice and stored at − 80  °C until DNA 
extraction.

DNA extraction
Total DNA was extracted from ~ 100  mg digesta, 
mucosa, and feed using the QIAamp DNA Stool Mini 

Table 2 Formulation of the experimental diets

REF, reference diet; IM, insect meal diet; TBARS, Thiobarbituric acid reactive 
substances

Ingredients (g/100 g) REF IM

Fishmeal LT94 35.0 6.0

Insect meal 0 60.0

Soy protein concentrate 29.6 5.0

Wheat gluten 14.3 14.4

Fish oil 4.6 6.9

Rapeseed oil 12.0 4.8

Vitamin and mineral premix 0.3 0.3

Yttrium 0.2 0.2

Miscellaneous 4.0 2.4

Chemical composition

Dry matter (%) 94 96

Crude lipid (%) 18 22

Crude protein (%) 47 44

Carbohydrates (%) 11 12

Ash (%) 8 7

Gross energy (MJ/Kg dry matter) 22 23

TBARS (nmol/g) 7 17
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Kit (Qiagen, Hilden, Germany) as previously described 
[36], except that 2  mL prefilled PowerBead tubes (glass 
beads, 0.1  mm; Cat no. 13118-50, Qiagen) were used 
for the bead beating. To extract DNA from water sam-
ples, the frozen filter was allowed to soften on ice and 
rolled into a cylinder with the white filter membrane fac-
ing outward using two sets of sterile forceps. The filter 
was then inserted into an 8  mL sterile tube containing 
the double amount of ASL buffer and glass beads used 
in the prefilled PowerBead tubes. The tube was secured 
horizontally to a mixer mill (Retsch GmbH, Germany; 
model, MM 301) and shaken vigorously at the frequency 
of 30 Hz for 5 min (2.5 min, pause and invert the tube, 
2.5  min). After shaking, the tube was centrifuged at 
4000 g for 1 min, and 2.6 mL supernatant was collected 
and evenly aliquoted into two 1.5  mL Eppendorf tubes. 
The DNA was extracted from the supernatant aliquots 
and pooled afterward, following the protocol as previ-
ously described [36]. For quality control purposes, a 
companion “blank extraction” sample was added to each 
batch of sample DNA extraction by omitting the input 
material, whereas an additional mock sample (Zymo-
BIOMICS™, Zymo Research, California, USA; catalog 
no., D6300) was included for each DNA extraction kit 
as a positive control. The mock consists of 8 bacteria 
(Pseudomonas aeruginosa, Escherichia coli, Salmonella 
enterica, Lactobacillus fermentum, Enterococcus faecalis, 
Staphylococcus aureus, Listeria monocytogenes, Bacillus 
subtilis) and 2 yeasts (Saccharomyces cerevisiae, Crypto-
coccus neoformans).

Library preparation and sequencing
The sequencing library was prepared using a two-step 
PCR protocol. In the first PCR, the V1-V2 hypervari-
able regions of the bacterial 16S rRNA gene were ampli-
fied using the primer set 27F (5′-AGA GTT TGA TCM 
TGG CTC AG-3′) and 338R (5′-GCW GCC WCC CGT 
AGG WGT-3′) [65]. The PCR was run in a total reaction 
volume of 25 μL containing 12.5 μL of Phusion® High-
Fidelity PCR Master Mix (Thermo Scientific, CA, USA; 
catalog no., F531L), 10.5 μL molecular grade  H2O, 1 μL 
DNA template, and 0.5 μL of each primer (10 μM). The 
amplification program was set as follows: initial denatur-
ation at 98 °C for 3 min; 35 cycles of denaturation at 98 °C 
for 15  s, annealing decreasing from 63 to 53  °C in 10 
cycles for 30 s followed by 25 cycles at 53 °C for 30 s, and 
extension at 72 °C for 30 s; followed by a final extension 
at 72 °C for 10 min. The PCR was run in duplicate incor-
porating negative PCR controls, which were generated by 
replacing the template DNA with molecular grade  H2O. 
The duplicate PCR products were pooled and examined 
by a 1.5% agarose gel electrophoresis. Amplicons from 
the first PCR were cleaned using the Agencourt AMPure 

XP beads (Beckman Coulter, Indiana, USA; catalog no., 
A63881).

In the second PCR, sample barcodes and Illumina 
sequencing adapters were attached to the amplicons 
by dual indexing using the Nextera XT Index Kit (Illu-
mina, California, USA; catalog no., FC-131-1096) [66]. 
PCR products from the second PCR were purified again 
using the AMPure XP beads. After the clean-up, repre-
sentative libraries were selected and analyzed using the 
Agilent DNA 1000 Kit (Agilent Technologies, California, 
USA; catalog no., 5067-1505) to verify the library size. 
Cleaned libraries were quantified using the Invitrogen 
Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, 
California, USA; catalog no., Q32854), diluted to 4 nM in 
10 mM Tris (pH 8.5) and finally pooled in an equal vol-
ume. Negative controls with library concentrations lower 
than 4 nM were pooled in equal volume directly. Due to 
the low diversity of amplicon library, 15% Illumina gener-
ated PhiX control (catalog no., FC-110-3001) was spiked 
in by combining 510 μL amplicon library with 90 μL PhiX 
control library. The pooled library was loaded onto the 
Miseq at 6 pM and sequenced using the Miseq Reagent 
Kit v3 (600-cycle) (Illumina; catalog no., MS-102-3003).

Due to technical challenges in obtaining high-quality 
PCR products for mucosa samples, the digesta samples 
were first amplified and sequenced. The PCR conditions 
for mucosa samples were optimized by diluting the DNA 
templates (1:5) to reduce the influence of PCR inhibi-
tors. The mucosa samples were then sequenced in a sec-
ond run together with feed and water samples. To assess 
potential batch effects between sequencing runs, 8 repre-
sentative digesta samples were also sequenced in the sec-
ond run to serve as technical replicates.

Sequence data processing
The raw sequence data from each run were separately 
processed by the DADA2 (version 1.20) in R (version 
4.1.1) [67] to infer amplicon sequence variants (ASVs) 
[68]. Specifically, the demultiplexed paired-ended reads 
were trimmed off the primer sequences (first 20 bps of 
forward reads and first 18 bps of reverse reads), trun-
cated at the position where the median Phred qual-
ity score crashed (forward reads at position 290 bp and 
reverse reads at position 238 bp for the first run; forward 
reads at position 290  bp and reverse reads at position 
248  bp for the second run) and filtered off low-quality 
reads. After the trimming and filtering, run-specific 
error rates were estimated, and the ASVs were inferred 
from each sample independently. The chimeras were 
removed using the “consensus” method after merg-
ing the forward and reverse reads. The resulting fea-
ture table and representative sequences from each run 
were imported into QIIME2 (version 2020.11) [69] and 
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merged. The taxonomy was assigned by a scikit-learn 
naive Bayes machine-learning classifier [70], which was 
trained on the SILVA 132 99% OTUs [71] that were 
trimmed to only include V1–V2 regions of the 16S rRNA 
gene. Taxa identified as chloroplasts or mitochondria 
were excluded from the feature table. The feature table 
was conservatively filtered to remove ASVs that had no 
phylum-level taxonomic assignments or appeared in 
only one biological sample. Contaminating ASVs were 
identified and removed based on two suggested criteria: 
contaminants are often found in negative controls and 
inversely correlate with sample DNA concentration [72], 
which was quantified by qPCR as previously described 
[29]. The ASVs filtered from the feature table were also 
removed from the representative sequences, which were 
then inserted into a reference phylogenetic tree built on 
the SILVA 128 database using the SEPP [73]. The alpha-
diversity indices were computed by rarefying the feature 
table at a subsampling depth of 10 532 sequences. To 
compare beta-diversity, we performed robust Aitchison 
PCA using the QIIME2 library DEICODE [74], which is 
a form of Aitchison distance that is robust to high levels 
of sparsity in the microbiome data via matrix completion. 
Samples with less than 1000 sequences and sequences 
with less than 10 total counts were excluded when run-
ning the robust Aitchison PCA. For downstream data 
visualization and statistical analyses, QIIME2 artifacts 
were imported into R using the qiime2R (version 0.99.35) 
package [75] and a phyloseq (version 1.38) [76] object 
was assembled. As the technical replicates showed strong 
batch effects between the sequencing runs, which could 
not be effectively removed by existing batch effect cor-
rection methods such as RUVSeq [77] and ComBat-seq 
[78], we performed the downstream data analysis inde-
pendently for samples sequenced in different runs.

Statistics
Differences in the alpha-diversity indices were compared 
by linear mixed-effects models using the R package afex 
(version 1.0-1) [79], which runs the lme4 [80] under 
the hood to fit mixed-effects models. Predictor vari-
ables in the models include the fixed effects Diet + Seg-
ment + Diet × Segment, and the random effects 
FishID + Tank. The homoscedasticity and normality of 
model residuals were visually assessed by inspecting 
diagnostic plots generated by the R package ggResid-
panel (version 0.3.0) [81]. When necessary, data were 
log-transformed to meet the model assumptions. The 
statistical significance of fixed predictors was estimated 
by Type III ANOVA with Kenward–Roger’s approxima-
tion [82] of denominator degrees of freedom. When the 
interaction between the main effects was significant, con-
ditional contrasts for the main effects were made using 

the R package emmeans (version 1.7.0) [83]. To compare 
differences in the beta-diversity, we performed the PER-
MANOVA [84] with 999 permutations in the PRIMER 
v7 (Primer-E Ltd., Plymouth, UK) using the same predic-
tors included in the linear mixed-effects models. Terms 
with negative estimates for components of variation were 
sequentially removed from the model via term pool-
ing, starting with the one showing the smallest mean 
squares. At each step, the model was reassessed whether 
more terms needed to be removed or not. Conditional 
contrasts for the main effects were constructed when 
their interaction was significant. Monte Carlo p values 
were computed as well when the unique permutations 
for the terms in the PERMANOVA were small (< 100). 
The homogeneity of multivariate dispersions among 
groups was visually assessed by boxplots and formally 
tested by the PERMDISP [85] with 999 permutations 
using the R package vegan (version 2.5–7) [86]. Per-fea-
ture tests for the association between specific microbial 
clade and sample metadata were done using the R pack-
age MaAsLin2 (version 1.8.0) [87]. The feature table was 
collapsed at the genus level and bacterial taxa of low 
prevalence (present in < 25% of samples) were excluded 
before running the association analysis. Predictor vari-
ables included in the association testing are fixed fac-
tors Diet + Segment + foxp3 (qPCR) + plin2 (qPCR), and 
the random effects FishID + Tank. Multiple comparisons 
were adjusted by the Holm [88] or Benjamini-Hochberg 
[89] method where applicable. Differences were regarded 
as significant for p < 0.05 or FDR-corrected q < 0.1.
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