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Bacterial communities in carnivorous 
pitcher plants colonize and persist in inquiline 
mosquitoes
Aldo A. Arellano1,2  and Kerri L. Coon2*  

Abstract 

Background: The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including 
bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. 
Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics 
and the moniker of W. smithii as a ‘keystone predator’, very little is known about microbiota acquisition and assembly 
in W. smithii mosquitoes or the impacts of W. smithii-microbiota interactions on mosquito and/or plant fitness.

Results: In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize 
and compare microbiota diversity in field- and laboratory-derived W. smithii larvae. We then conducted controlled 
experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across 
the W. smithii life cycle. Methods were also developed to produce axenic (microbiota-free) W. smithii larvae that can 
be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results 
support a dominant role for the pitcher environment in shaping microbiota diversity in W. smithii larvae, while also 
indicating that pitcher-associated microbiota can persist in and be dispersed by adult W. smithii mosquitoes. We also 
demonstrate the successful generation of axenic W. smithii larvae and report variable fitness outcomes in gnotobiotic 
larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field.

Conclusions: This study provides the first information on microbiota acquisition and assembly in W. smithii mos-
quitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, 
our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for 
future studies to understand how W. smithii-microbiota interactions shape the structure and stability of this important 
model ecosystem.
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Background
The purple pitcher plant (Sarracenia purpurea) is a per-
ennial carnivorous plant occurring natively throughout 
the southern and northeastern United States and parts of 
Canada. Each plant produces modified leaves (pitchers) 

that act as pitfall traps within which captured prey drown 
in collected rainwater [1]. Captured prey serve as an 
important source of nitrogen and other nutrients deplete 
in the bog environments S. purpurea plants inhabit. 
However, S. purpurea plants do not endogenously encode 
several classes of degradative enzymes required for the 
breakdown of prey [2, 3] and instead must rely on the 
activity of mutualistic aquatic invertebrates and resi-
dent bacterial communities (microbiota) for prey diges-
tion and nutrient assimilation [4–7]. The pitcher plant 
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mosquito (Wyeomyia smithii) is one such mutualistic 
aquatic invertebrate commonly found in S. purpurea. W. 
smithii mosquitoes develop exclusively in pitcher plants, 
where larvae molt through four consecutive aquatic 
instars and an aquatic pupal stage before emerging as 
terrestrial adults [4, 8]. In addition to contributing to 
the mechanical disruption of captured prey, studies of 
W. smithii in natural settings also implicate larvae as key 
mediators of assembly of S. purpurea-associated commu-
nities [9–11]. While recent studies have used surveys at 
geographical scales to parameterize the contribution of 
W. smithii mosquitoes to ecosystem scale processes [12, 
13], the species is rarely maintained in continuous labo-
ratory culture. This has led to a lack of studies seeking to 
experimentally validate and functionally characterize W. 
smithii-mediated effects in the S. purpurea system.

Research into mosquito-microbe interactions has 
grown recently, owing to data supporting important 
roles for mosquito microbiota (both the communities 
of microorganisms present in the mosquito itself and/or 
the aquatic environments in which mosquitoes develop) 
in regulating several aspects of mosquito biology, includ-
ing the ability of certain species to transmit pathogens 
that cause disease in humans and other vertebrates [14]. 
This particular feature of mosquito biology is due to most 
mosquito species being ‘anautogenous’, which means 
adult females must blood feed on a vertebrate host to 
produce eggs [8, 15]. Less well-known but of fundamen-
tal interest is that some mosquito species have evolved 
to be ‘autogenous’ and can produce eggs without a blood 
meal [8, 15]. Wyeomyia smithii mosquitoes are faculta-
tively autogenous; adult females in northern populations 
produce eggs without ever blood feeding, while females 
in southern populations may produce eggs with or with-
out blood feeding [16]. The genetic underpinnings of the 
transition from blood feeding to obligate non-biting in 
northern populations have been studied [17, 18]. Stud-
ies in other facultatively autogenous mosquito species 
also suggest that shifts to autogenous lifestyles may be 
facilitated by microbial enhancement of nutrient acquisi-
tion by larvae, which provides resources for egg produc-
tion by adult females [19]. However, to date no study has 
examined microbial diversity in naturally occurring or 
laboratory-reared populations of W. smithii or the impact 
of W. smithii- and pitcher-associated microbiota on W. 
smithii fitness.

Here, we used high throughput sequencing of bacte-
rial 16S rRNA gene amplicons to compare microbiota 
diversity in field-derived W. smithii larvae to laboratory-
colonized larvae and characterize microbiota acquisi-
tion and assembly across W. smithii life history. We then 
developed methods to generate axenic (microbiota-
free) W. smithii larvae that can thereafter be selectively 

recolonized with known microbial taxa and assemblages 
in the laboratory.

Methods
Field collections
Samples of pitcher fluid and resident larvae were sam-
pled exhaustively from 35 mature pitchers located in the 
Cedarburg Bog Natural Area in Saukville, WI. Fluid from 
each pitcher was homogenized and drawn out using a 
sterile syringe affixed with pre-autoclaved nalgene tub-
ing. Tubing and syringes were rinsed with sterile water 
between pitchers and fluid samples were placed immedi-
ately on ice for transport back to the laboratory in Madi-
son, WI. All mosquito larvae were removed from each 
sample using a sterile thin-stem transfer pipette, rinsed 
through six iterative washes in sterile DNA-free water 
(Corning, Corning, NY USA), and stored at − 20 °C prior 
to DNA isolation. Approximately 5-ml of the remaining 
fluid in each sample was then centrifuged for 20-min 
at maximum speed (21,300 × g) prior to removal of all 
supernatant and storage of cell pellets at − 20  °C until 
DNA isolation.

Laboratory colony and collections
Laboratory-colonized W. smithii were conventionally 
reared in a reach-in light- and temperature-controlled 
incubator (Percival) at 25 °C, > 70% relative humidity, and 
16-h light: 8-h dark photoperiod [17]. Newly hatched lar-
vae from eggs laid ~ 72-h previously were maintained in 
covered plastic rearing trays containing distilled water 
and fed a nutritionally complete, standard diet consisting 
of guinea pig chow (PMI Nutrition International, Brent-
wood, MO USA) and freeze-dried brine shrimp (San 
Francisco Bay Brand, Newark, CA USA) (4:1). Resulting 
pupae were rinsed in distilled water and resuspended in 
50-ml of distilled water before being transferred to cages 
(BioQuip) for adult emergence. After emergence, conven-
tionally reared adults were provided 5% sucrose in water 
and rehydrated pesticide-free raisins (Sun-Maid, Fresno, 
CA USA) ad  libitum. Adult females thereafter laid eggs 
(i.e., oviposited) in containers containing 50-ml distilled 
water ~ 5 days post-emergence.

Six sets of laboratory-colonized W. smithii samples 
were collected for downstream sequencing: (i) 50-ml of 
water from four replicate rearing trays containing con-
ventionally reared larvae that had molted to the final 
(fourth) instar; (ii) four pools of ~ 80 fourth instar larvae 
from the same rearing trays; four pools of (iii) 10 newly 
emerged adults (male and female) and (iv) 10 mature 
adults (male and female), which emerged from surface-
sterilized pupae collected from the same rearing trays, (v) 
egg masses oviposited onto sterile filter paper in sterile 
water by mature adult females from surface-sterilized 
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pupae (hereafter referred to as ‘STR eggs’), and (vi) egg 
masses oviposited by conventionally reared females 
(hereafter referred to as ‘CNV eggs’). Newly emerged 
adult, mature adult, and STR egg samples were specifi-
cally generated as follows. Pupae produced from conven-
tionally reared larvae were surface-sterilized by placing 
in 2% bleach for 2-min and rinsing 3 × in sterile water. 
Surface-sterilized pupae were then placed in sterile water 
in a sterile plastic chamber for adult emergence. Newly 
emerged adults were collected immediately (< 12-h) 
after emergence, while mature adults were held in sterile 
cages and provided sterile 5% sucrose in water for food 
and sterile filter paper in water for oviposition for 5-days 
prior to collection of STR egg and mature adult male and 
female samples.

All water and larval samples were processed immedi-
ately after collection as described above. Newly emerged 
and mature adults were separated by sex using body size, 
rotation of the male terminalia, and differential termi-
nalia morphology determined using a Leica S9E stereo 
microscope [20]. Individual adult males and females 
were then surface-rinsed with 70% EtOH, 0.05% bleach, 
and sterile water, and finally decapitated to account for 
eye pigments associated with PCR inhibition [21] prior 
to pooling and storage at − 20 °C. Egg masses (STR and 
CNV) were not surface-rinsed and immediately frozen at 
− 20 °C until DNA isolation.

Bacterial 16S rRNA library construction and sequencing
Total genomic DNA was isolated from all field and 
laboratory samples using a standard phenol–chloro-
form extraction procedure [22, 23] prior to one-step 
PCR amplification of the V4 region of the bacterial 16S 
rRNA gene using barcoded primers as described previ-
ously [24]. PCR amplification was performed in 25-ul 
reactions containing ~ 10-ng of template DNA, 12.5-ul 
of 2X HotStart Ready Mix (KAPA Biosystems, Wilming-
ton, MA USA), and 5-pmol of each primer. No-template 
reactions as well as reactions using template from blank 
DNA extractions served as negative controls. Reaction 
conditions were: initial denaturation at 95  °C for 3-min, 
followed by 25 cycles at 95  °C for 30-s, 58  °C for 30-s, 
and 72 °C for 30-s, and a final extension step at 72 °C for 
5-min, with the exception of all adult samples derived 
from our standard W. smithii laboratory colony, which 
were amplified at 30 cycles. Products were visualized 
on 1% agarose gels and purified using a MagJET NGS 
Cleanup and Size Selection Kit (Thermo Fisher Scientific) 
or by running the entire reaction volume on a 1% low-
melt agarose gel prior to DNA recovery from bands of the 
correct size using a ZR-96 Zymoclean Gel DNA Recovery 
Kit (Zymo Research, Irvine, CA USA). The 91 resulting 
purified libraries were finally quantified using a Quantus 

fluorometer (Promega) and combined in equimolar 
amounts prior to paired-end sequencing (2 × 250-bp) on 
an Illumina MiSeq by the DNA Sequencing Facility at the 
University of Wisconsin-Madison (Madison, WI USA).

Sequencing data analyses
De-multiplexed reads were imported into QIIME2 [25] 
and paired reads joined using VSEARCH [26]. Denoising 
was then carried-out in two steps; first, reads were qual-
ity-filtered using q-scores [27], and second, Deblur was 
used with `p-trim-length` set to the position at which 
point the median quality score prior to filtering begins to 
drop, here corresponding to a value of 250 [28]. Taxon-
omy was assigned using a Naive-Bayes classifier trained 
using Greengenes reference sequences [29, 30]. Multi-
ple sequence alignment was performed using `mafft` 
[31], and phylogenetic tree construction was performed 
using FastTree2 [32]. All endpoint artifacts generated in 
QIIME2 were then exported, merged with metadata, and 
converted to a phyloseq object for further analysis in R 
(version 4.1.1) [33].

Rooting of the phylogenetic tree was performed in R 
using phyloseq and a decontamination procedure was 
implemented using a two-tiered approach implemented 
in the R package ‘decontam’ [34]. DNA quantification val-
ues prior to library pooling in study samples, blank DNA 
extraction products, and PCR negative controls were 
used to generate a list of likely contaminant reads. Con-
taminant reads that were more prevalent in control sam-
ples than in study samples were then removed from the 
entire dataset, along with samples with fewer than 100 
total reads and reads classified as ‘Chloroplast’ or ‘mito-
chondria’ prior to downstream analyses.

Species richness and Shannon diversity were estimated 
using the R packages ‘breakaway’ and ‘DivNet’, respec-
tively [35, 36]. DivNet offers the functionality of covari-
ate-wise alpha diversity index estimation in addition to 
sample-wise estimation—here both metrics are reported 
with heavily outlying samples removed prior to covari-
ate-wise Shannon diversity estimation. Statistical tests of 
covariate-wise differences in estimated richness or Shan-
non diversity were computed using the ‘betta’ function in 
the R package ‘breakaway’ [37]. Beta diversity ordinations 
were constructed using both phylogeny-aware and phy-
logeny-unaware metrics appropriate for compositional 
data analysis (CoDa) [38]. In the former case, we imple-
mented PhILR transformation (Phylogenetic Isometric 
Log-Ratio), which uses the phyloseq abundance table and 
phylogenetic tree to generate values termed ‘balances’ 
that represent the log-ratio of the geometric mean abun-
dance of taxa that descend from a given internal node on 
the provided phylogenetic tree [39, 40]. In the latter case, 
a centered-log ratio (clr) transformation was used in the 
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R package ‘microbiome’ [41]. For both metrics, trans-
formation was followed by principal component analy-
sis (PCA) and beta diversity ordination using phyloseq 
against the two most explanatory principal component 
axes. Global statistical differences in clustering by covari-
ates of interest were determined using PERMANOVA 
(permutational multivariate analysis of variance) imple-
mented using the function ‘adonis’ in the R package 
‘vegan’ [42]. Subsequent pairwise tests were undertaken 
in the event of a significant global test and p-values cor-
rected using the Bonferroni method. The instance of 
variance-driven significant results was assessed using 
PERMDISP (permutational analysis of multivariate dis-
persions) using the ‘betadisper’ function in the R package 
‘vegan’ with pairwise tests also conducted and corrected 
via the Bonferroni method when the global test was sig-
nificant [42]. Differences in taxon abundance across sam-
ple groups were tested for significance using ALDEx2 
and Benjamini-Hochberg (FDR) adjusted p-values [43].

Preparation of axenic and gnotobiotic larvae
Axenic larvae were produced by placing eggs derived 
from the conventional laboratory colony into sterile Petri 
dishes containing 70% EtOH for 5-min, transferring to 
a solution of 5% bleach and 0.01% D-256 disinfectant 
(Vedco, Saint Joseph, MO USA) for 3-min, transferring 
again to 70% EtOH for 5-min, and rinsing 3 × in sterile 
water. Eggs were then transferred to vented 25-cm2 cell 
culture flasks (Corning) containing 30-ml of sterile water 
and 2.5 ug/ml of amphotericin B (Fisher BioReagents) 
and incubated under conventional rearing conditions 
(described above). First instars hatched 48–72-h later 
and were fed standard diet (described above) sterilized 
by exposure to 10 kGy from a cobalt 60 gamma radiation 
source housed in the Breazeale Nuclear Reactor Build-
ing on The Pennsylvania State University campus (Uni-
versity Park, PA USA). Sterility of larvae and diet were 
confirmed by culture-based and PCR analysis using uni-
versal bacterial 16S rRNA gene and fungal ITS primers as 
described previously [44].

Gnotobiotic (i.e., recolonized) larvae were produced by 
inoculating a given microbiota treatment into replicate 
wells of sterile 6-well culture plates (Corning) contain-
ing 5-ml of sterile water, 10 axenic first instars, and 3-mg 
of sterilized diet. Plates were then maintained under 
conventional rearing conditions (described above) and 
fed and monitored daily for larval growth and molting. 
One of three microbiota treatments (i.e., inocula) were 
used to produce gnotobiotic larvae in this study: (i) 5-ul 
of material from a cryopreserved glycerol stock con-
taining the mixed community of bacteria present in the 
water of fourth instar larvae under conventional rearing 
conditions (~ 5 ×  105 total bacterial cells), (ii) ~ 5 ×  105 

cells of one of four microbial taxa isolated from fluid 
collected from pitchers in the field (described above), 
or (iii) ~ 5 ×  105 cells of a standard laboratory strain of 
Escherichia coli (str. K12 substr. MG1655). Maintenance 
of gnotobiotic conditions was confirmed in a subset of 
samples by streak-plating on permissive media and con-
firming growth by the single morphotype of interest.

Growth measurements and data analysis
Growth of gnotobiotic larvae in response to different 
microbiota treatments was measured as the proportion 
of larvae that developed to the pupal stage and the total 
development time (days) of individual larvae to pupation. 
Pupae from plates inoculated with the mixed community 
of bacteria present under conventional rearing condi-
tions were also pooled by sex as determined by genital 
lobe morphology using a Leica S9E stereo microscope, 
surface-sterilized as described above, and allowed to 
emerge from sterile water in sterile chambers to measure 
the impact of microbiota recolonization on adult body 
size (measured as the length of the right forewing from 
the axillary incision to the tip excluding fringe) [45, 46]. 
All wing length measurements were conducted using a 
Leica S9i digital stereo microscope, LAS EZ image cap-
ture software, and ImageJ. All microbiota treatments 
were assayed using two independent cohorts of axenic 
larvae, resulting in at least two plates, sixteen wells, 
and ~ 120 larvae being assayed per microbiota treatment. 
Larvae reared in the absence of any microbes and main-
tained alongside experimental plates served as the nega-
tive control for all experiments.

Proportional data (e.g., survival to pupation) were 
analyzed by Bonferroni-corrected pairwise Barnards’s 
or Chi-square tests to compare axenic and gnotobiotic 
treatments to the conventional positive control. Non-
proportional data (e.g., days to pupation) confirmed to 
meet the assumptions of parametric statistical tests were 
analyzed using Student’s t-tests (two groups of equal var-
iance), Welch’s t-tests (two groups of unequal variance), 
or one-way analysis of variance (ANOVA) followed by 
post hoc Tukey–Kramer Honest Significant Difference 
(HSD) tests for multiple comparisons with Bonferroni 
correction. Non-parametric data were analyzed using 
Mann Whitney U tests (two groups) or Kruskal–Wallis 
tests (three or more groups) followed by post hoc Dunn’s 
tests for multiple comparisons with Benjamini-Hochberg 
(FDR) adjusted p-values.

Results
Laboratory colonization reduces diversity and shifts 
composition of the W. smithii larval microbiota
We first characterized the bacterial community present in 
laboratory colonized W. smithii larvae and compared it to 
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the community present under field conditions. Sequenc-
ing of 16S rRNA gene amplicons from water and larval 
samples derived from either naturally occurring pitchers 
in the Cedarburg Bog State Natural Area in Wisconsin, 
USA or four replicate rearing trays from our standard 
rearing colony in the laboratory generated a total of 
786,262 sequences (median = 9701 per sample) that were 
assigned to 761 unique ASVs after quality control filter-
ing (Additional file 1: Table S 1). Rarefaction curves satu-
rated at 1000 sequences for all but one sample, which was 
eliminated from the dataset prior to downstream analy-
ses (Additional file  1: Table S 1, Additional file  3: Fig. 
S  1). Sample complexity varied with total ASVs ranging 
from 25 to 242 for all water and 21 to 122 for all larval 
samples (Additional file 1: Table S 1). Bacterial diversity 
was higher in field-derived samples than laboratory-
derived samples as measured by both breakaway richness 
(p < 0.001) and the Shannon index (p < 0.001) (Additional 
file  1: Table S 1). Bacterial diversity was also higher in 
water than larvae, though to a greater extent in the field 
than in the lab (field: breakaway richness p < 0.001, Shan-
non diversity p < 0.001); lab: breakaway richness p = 0.64, 
Shannon diversity p = 0.002) (Additional file 1: Table S 1).

Fifteen bacterial phyla were identified across all sam-
ples, but four accounted for ~ 95% of ASVs: Proteobac-
teria (44%), Actinobacteria (32%), Bacteroidetes (11%), 
and Firmicutes (8%). Classification into orders showed 
that larvae contained the same taxa present in the water 
they were collected from, but relative abundance differed 
(Fig. 1; Additional file 4: Fig. S 2). Laboratory-colonized 
larvae also harbored bacterial communities that signifi-
cantly differed in composition from field-collected lar-
vae. Laboratory-colonized W. smithii larvae contained 
a notably greater proportion of taxa within the orders 
Sphingobacteriales (p = 0.01), Aeromonadales (p = 0.03), 
Flavobacteriales (p = 0.02), Cytophagales (p = 0.001), 
Bacillales (p = 0.005), and Rhizobiales (p = 0.001) than 
field-collected larvae, while field-collected larvae con-
tained a greater proportion of taxa within the orders 
Enterobacteriales (p = 0.001), Xanothomonadales 
(p = 0.007), and Gemmatales (p = 0.02) (Fig.  1). These 
observations were further supported by ordination anal-
yses using both phylogenetic aware (PhILR) and una-
ware (clr) beta diversity indices, both of which revealed 
significant clustering of samples by collection site (field 
vs. lab) with bacterial communities in larvae being most 
similar to those in the water from which they were col-
lected (Fig.  2; Tables  1, 2). Only twelve ASVs were 
shared across all of the field and laboratory larval sam-
ples we sequenced. These ASVs belonged to one of seven 
bacterial orders (Actinomycetales, Acidimicrobiales, 
Rhizobiales, Sphingomonadales, Aeromonadales, and 
Clostridiales) and included members of genera Cryocola, 

Sphingomonas, Bradyrhizobium, Elizabethkingia, and 
Clostridium. Additionally, common ASVs mapped to 
unidentified members of the Lachnospiraceae, Micro-
bacteriaceae, Acidimicrobiales, Aeromonadaceae, and 
Rhizobiales. Bacterial taxa detected in field-collected 
larvae that were absent in laboratory-colonized larvae 
included 35 ASVs distributed across 15 bacterial orders 
and 27 genera, including members of the Xanthomona-
daceae and Neisseriaceae, known to commonly associ-
ate with S. purpurea in bog environments [4, 5, 47–49]. 
In contrast, taxa unique to laboratory-colonized larvae 
included only two ASVs from the order Pseudomon-
adales and of the genera Pseudomonas and Acinetobac-
ter, both of which are common in laboratory colonies of 
other mosquito species [50–57].

Sequence‑based profiling of bacterial diversity across W. 
smithii life history
Next, we used 16S rRNA gene amplicon sequencing to 
assess whether bacteria are transstadially transmitted 
from W. smithii larvae to adults by surface-sterilizing 
pupae from our standard laboratory rearing colony and 
allowing adults to emerge from sterile water in a sterile 
chamber. A subset of newly emerged adults (male and 
female) was then processed shortly (< 12-h) after emer-
gence, while the remaining adults were held in sterile 
chambers containing only a sterile sucrose solution for 
consumption in order to assess bacterial persistence to 
maturity. Mature adult females were finally allowed to 
oviposit eggs under sterile conditions to assess the abil-
ity of W. smithii mosquitoes to disperse bacteria into 
the pitcher environment and between mosquito gen-
erations. The resulting sequencing dataset contained a 
total of 236,271 sequences (median = 7294 per sample) 
assigned to 191 unique ASVs across a total of 26 samples 

Table 1 PERMANOVA and PERMDISP analysis of the effect of 
sample source (field vs. lab) and sample type (larvae vs. water) on 
beta diversity of W. smithii-associated bacterial communities as 
measured by PhILR

* p < 0.05, ** p < 0.01

Comparison PERMANOVA PERMDISP

Test statistic p‑value Test statistic p‑value

Overall (F) F3,58 = 11.82 0.001** F3,58 = 12.96 0.001**

Field larvae–field 
water

19.62 0.006** − 1.82 0.32

Field larvae–lab larvae 24.21 0.006** 4.23 0.006**

Field larvae–lab water 30.51 0.006** 2.85 0.04*

Field water–lab larvae 14.18 0.006** 5.80 0.006**

Field water–lab water 18.81 0.006** 4.09 0.006**

Lab larvae–lab water 1.32 1 − 0.99 1
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(Additional file 2: Table S  2), including the water and lar-
val samples included in our comparative analyses with 
field-collected material (described above). Rarefaction 
curves saturated at 1000 sequences for all but the newly 
emerged adult samples (Additional file 2: Table S 2, Addi-
tional file 5: Fig. S 3), for which we generated significantly 
fewer reads on average than for other samples (ANOVA 
on log-transformed total reads:  F(3,18) = 32.6, p < 0.001; 
followed by a Tukey–Kramer HSD test). Two of these 
samples were also identified as ‘heavily outlying’ during 

initial analysis and were therefore removed from the 
dataset prior to all subsequent analyses (Additional file 2: 
Table S 2).

The final dataset collectively indicated that bacterial 
diversity declined from 120 ASVs in larvae and larval 
water to 112 in newly emerged adults and 28 in mature 
adults (male and female) (Fig. 3; Additional file 2: Table  
S 2). Indeed, bacterial diversity as measured by the 
Shannon index was distinct in larvae relative to either 
newly emerged (p < 0.001) or mature adults (p < 0.001) 
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of dispersion, respectively (see Tables 1, 2)
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(Additional file 2: Table S 2). The majority (> 95%) of bac-
terial genera detected in mature adults were also present 
across mosquito development, although there were dra-
matic shifts in the relative abundance of specific com-
munity members (Fig.  3). More specifically, taxa within 
the most abundant bacterial orders in larvae (Actinomy-
cetales, Rhizobiales) decreased in abundance in newly 
emerged adults, while taxa within the bacterial orders 
Burkholderiales, Aeromonadales, and Flavobacteriales 
increased (Fig.  3). Sugar feeding further reduced the 
abundance of larval taxa in mature adults, while greatly 
increasing the abundance of taxa within the bacterial 
orders Flavobacteriales and Sphingobacteriales (Fig.  3). 
Shannon diversity was also significantly lower in mature 
adults than in newly emerged adults (p < 0.001), irrespec-
tive of sex (male vs. female) (Additional file 2: Table S 2). 
We did not detect any notable differences in bacterial 

Table 2 PERMANOVA and PERMDISP analysis of the effect of 
sample source (field vs. lab) and sample type (larvae vs. water) on 
beta diversity of W. smithii-associated bacterial communities as 
measured by clr

* p < 0.05, ** p < 0.01

Comparison PERMANOVA PERMDISP

Test statistic p‑value Test statistic p‑value

Overall (F) F3,58 = 8.10 0.001** F3,58 = 9.82 0.001**

Field larvae–field 
water

11.87 0.006** − 3.21 0.03**

Field larvae–lab larvae 31.31 0.006** 3.05 0.02*

Field larvae–lab water 40.96 0.006** 2.38 0.04*

Field water–lab larvae 16.40 0.006** 3.56 0.006**

Field water–lab water 20.18 0.006** 3.11 0.02**

Lab larvae–lab water 2.31 0.18 − 0.55 1
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diversity between male and female newly emerged 
(p > 0.05 for both breakaway richness and Shannon index) 
or mature (p > 0.05 for both breakaway richness and 
Shannon index) adults (Additional file 2: Table S  2).

While we did not sequence enough samples to robustly 
compare bacterial diversity on eggs against all of the 
other samples we sequenced, our results identified two 
notable patterns worthy of future investigation. First, we 
detected many (~ 92%) of the ASVs present in mature 
adult females on STR eggs laid under sterile condi-
tions, including taxa within each of the dominant bac-
terial orders (e.g., Flavobacteriales, Sphingobacteriales) 
detected in females prior to oviposition (Fig. 3). Many of 
these taxa (~ 73%) were also present on both CNV eggs 
laid by conventionally reared females under non-sterile 

conditions and all (100%) were detected in the water 
samples we collected from conventional rearing trays. 
Second, ordination analyses using both the PhILR and clr 
beta diversity indices further supported the observation 
that bacterial communities present on eggs were most 
similar to those present in mature adult females and the 
water samples we sequenced (Fig. 4; Tables 3, 4).

Laboratory‑colonized W. smithii larvae as a tractable model 
in which to study microbiota function
The final goal of this study was to develop methods to 
generate axenic W. smithii larvae that can thereafter be 
selectively recolonized with known microbial taxa and 
assemblages in the laboratory. We first produced axenic 
larvae by surface-sterilizing eggs and hatching first 

Fig. 4 Ordination analyses using phylogenetic aware (PhILR, left) and unaware (clr, right) beta diversity indices. Legends in the bottom left of each 
plot designate sample type by the following symbol shapes/colors: red squares (eggs), green triangles (water), yellow circles (larvae), unfilled purple 
stars (newly emerged adult males), filled purple stars (newly emerged adult females), unfilled blue diamonds (mature adult males), and filled blue 
diamonds (mature adult females). Ellipses designate 95% confidence intervals. Permutational multivariate analysis of variance (PERMANOVA) and 
permutational analysis of multivariate dispersions (PERMDISP) were used to test for group effects and heterogeneity of dispersion, respectively (see 
Tables 3, 4)

Table 3 PERMANOVA and PERMDISP analysis of the effect of sample type (i.e., life stage) on beta diversity of W. smithii-associated 
bacterial communities as measured by PhILR

* p < 0.05, ** p < 0.01

Comparison PERMANOVA PERMDISP

Test statistic p‑value Test statistic p‑value

Overall (F) F3,18 = 24.91 0.001** F3,18 = 1.84 0.17

Larvae–water 1.99 0.82 – –

Larvae–newly emerged adults 20.54 0.04* – –

Larvae–mature adults 115.87 0.02* – –

Newly emerged adults–water 12.99 0.05 – –

Newly emerged adults–mature adults 77.97 0.01* – –

Mature adults–water 73.81 0.01* – –
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instars in sterile water. We then plated pooled homogen-
ates of first instars hatched from sterilized eggs and sub-
sequently maintained in plates containing sterile water 
and diet to confirm that no bacteria or fungi could be 
cultured on nutrient or blood agar plates. Total genomic 
DNA was also isolated from pools of axenic larvae to 
confirm that no amplicons could be generated via PCR 
with universal bacterial (16 rRNA gene) or fungal (ITS) 
primers (Additional file 6: Fig. S 4).

Next, we developed methods to generate gnotobiotic 
W. smithii larvae by reintroducing the mixed commu-
nity of bacteria present under conventional rearing con-
ditions (hereafter referred to as ‘native microbiota’) into 
the water of cultures containing axenic larvae. We then 
used these methods to query the larval fitness impacts of 
individual bacterial isolates derived from naturally occur-
ring pitchers in the field (described above) by comparing 
the developmental outcomes of gnotobiotic larvae mono-
colonized by individual isolates to larvae recolonized by 
their native microbiota. Bacterial isolates were obtained 
by plating pitcher fluid on various media and then 
sequencing 16S rRNA gene amplicons from individual 
colonies. This resulted in isolation of a number of taxa 
in bacterial orders previously identified by sequencing of 
the same communities (Fig.  1). We focused our recolo-
nization assays on isolated strains of Chromobacterium 
(Order Neisseriales), Elizabethkingia (Order Flavobac-
teriales), Paraburkholderia (Order Burkholderiales), and 
Rhizobium (Order Rhizobiales). These genera were com-
monly isolated from pitcher fluid and mosquito-derived 
field samples in addition to being prominent genera in 
field 16S rRNA amplicon sequencing data. We also con-
ducted recolonization assays using the K12 strain of E. 
coli, as this bacterium was not detected in any of the field 
or laboratory samples we sequenced.

Results showed that ~ 79% of gnotobiotic W. smithii lar-
vae recolonized by their native microbiota developed to 
the pupal stage on average ~ 17.5 days post-egg-hatching 

and emerged into adults that were comparable in size to 
conventionally reared adults from our standard labora-
tory colony (Fig.  5; Additional file  7: Fig. S   5). Results 
further showed that each of our bacterial isolates of inter-
est was able to colonize and persist in larvae as evidenced 
by the ability to recover and culture viable colonies from 
water and homogenates of fourth instar larvae collected 
from experimental plates. However, only gnotobiotic 
larvae monocolonized by Paraburkholderia or E. coli 
exhibited pupation rates that did not differ from gnoto-
biotic larvae recolonized by their native microbiota and 
all of the bacterial isolates we assayed produced gnotobi-
otic larvae that developed slower than gnotobiotic larvae 
recolonized by their native microbiota (Fig. 5). Interest-
ingly, the reduced pupation rate observed for gnotobiotic 
larvae monocolonized by Chromobacterium, Elizabethk-
ingia, or Rhizobium was due to a larger proportion of lar-
vae failing to pupate (χ2 = 14.865, df = 1, p < 0.001) rather 
than a larger proportion of individuals dying as larvae 
(χ2 = 0.145, df = 1, p > 0.05). Axenic W. smithii larvae, 
which served as a negative control for all of our recolo-
nization assays and were provided sterilized diet only 
throughout the experiment, also failed to grow beyond 
the first instar with all larvae eventually dying without 
pupating before the end of the experiment (Fig. 5).

Discussion
The leaves of carnivorous Sarracenia pitcher plants and 
the aquatic food webs within them have long been con-
sidered a model system in ecological research [58–61]. 
A key constituent of these food webs is the pitcher-asso-
ciated microbiota, which includes diverse communities 
of bacteria that are distinct from the surrounding envi-
ronment and that are essential for digestion of captured 
prey and nutrient assimilation by the plant [4–7]. The 
degree to which bacteria can digest prey is thought to be 
dependent, at least in part, on the abundance of larvae of 
the endemic mosquito W. smithii, which feed on bacteria, 

Table 4 PERMANOVA and PERMDISP analysis of the effect of sample type (i.e., life stage) on beta diversity of W. smithii-associated 
bacterial communities as measured by clr

* p < 0.05, ** p < 0.01

Comparison PERMANOVA PERMDISP

Test statistic p‑value Test statistic p‑value

Overall (F) F3,18 = 7.64 0.001** F3,18 = 41.23 0.001**

Larvae–water 1.37 1 − 0.70 1

Larvae–newly emerged adults 12.16 0.02* − 6.19 0.02*

Larvae–mature adults 78.77 0.02* 5.32 0.02*

Newly emerged adults–water 10.68 0.02* 3.29 0.11

Newly emerged adults–mature adults 32.08 0.006** − 13.38 0.006**

Mature adults–water 57.54 0.02* − 5.00 0.02*
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protozoans, macroinvertebrates, detritus, and other 
organic matter present in pitcher fluid [58, 62]. How-
ever, while W. smithii-induced shifts in the taxonomic 
and/or functional profiles of pitcher-associated micro-
bial communities have the potential to alter nutrient 
cycling and other processes to the benefit or detriment 
of the host plant [9], almost nothing is known about W. 
smithii-microbiota interactions, likely owing to their lack 
of immediate biomedical relevance and unique biology, 
which makes them difficult to rear continuously in the 
laboratory.

The first goal of this study was to characterize micro-
biota diversity in field-derived W. smithii larvae and com-
pare it to that in laboratory-colonized larvae. We then 
used this information to further characterize microbiota 
acquisition and assembly across W. smithii life history. 
All mosquito larvae are aquatic and develop by feeding 
on detritus and other organic matter, including bacteria, 
present in the surrounding water column [8]. Previous 
studies in both laboratory and field-collected mosquitoes 
collectively indicate that mosquito larvae hatch from eggs 
with no extracellular microbes in their digestive tract 
[44]. Thereafter, they ingest bacteria and other microor-
ganisms from their aquatic environment, which colonize 
the gut to form a microbiota that is in part transstadially 
transmitted to the adult stage [44, 53, 56, 63, 64]. The 
adult gut microbiota may further change in response 

to consumption of water from breeding sites, nectar or 
other food sources including a blood meal, although bac-
terial diversity in adults is consistently much lower than 
in larvae [44, 63, 65–69]. Limited evidence also suggests 
that a portion of the microbiota present in adult females 
is deposited onto eggs during oviposition, which may 
provide a weak mode of vertical transmission between 
generations [44].

Our results identified members of the bacterial phyla 
Proteobacteria (Neisseriales, Burkholderiales, Entero-
bacteriales, Xanthomonadales, Pseudomonaldales), 
Actinobacteria, Bacteroidetes (Sphingobacteriales, Fla-
vobacteriales), and Firmicutes (Clostridiales) as domi-
nant taxa in the fluid of naturally occurring pitchers in 
the field, consistent with previous studies in S. purpu-
rea [4, 5, 47–49]. Members of the same taxa were also 
detected in W. smithii larvae collected from the same 
pitchers, which supports previous results showing that 
mosquito larvae are colonized by a subset of the bacte-
ria they ingest during feeding [44, 53, 56, 63, 64]. Further 
consistent with previous studies was the overall observa-
tion that microbiota diversity was much lower in labora-
tory-reared mosquitoes as compared to field-collected 
mosquitoes and that field and laboratory populations of 
mosquitoes exhibited differences in community compo-
sition [50–57], including the dominance of taxa within 
the bacterial orders Sphingobacteriales, Aeromonadales, 
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Flavobacteriales, Cytophagales, Bacillales, and Rhizo-
biales in laboratory-reared W. smithii larvae that were 
less abundant in field-collected individuals. That we 
detected a subset of the ASVs present in laboratory-
reared W. smithii larvae in newly emerged adults from 
surface-sterilized pupae provides experimental evidence 
to support largely circumstantial data suggesting adult 
mosquitoes initially acquire their gut microbiota from 
larval breeding sites [67]. The reduction of ASV diversity 
in newly emerged adults and proliferation of specific taxa 
in mature adults after sugar feeding is also consistent 
with patterns seen in other studies [65, 70], including the 
proliferation of taxa within the bacterial orders Sphin-
gobacteriales and Flavobacteriales that overwhelmingly 
dominated our mature adult samples.

Overall, our sequencing results support a dominant 
role for the pitcher environment in shaping the micro-
biota present in W. smithii mosquitoes. That we detected 
dominant taxa present in mature adult females on both 
(i) the surface egg masses, and (ii) water from conven-
tional rearing trays in the laboratory also supports a 
potential role for oviposition by adult female W. smithii 
mosquitoes in dispersing bacteria into the pitcher envi-
ronment and between mosquito generations. Whether 
the same patterns are observed under field conditions 
warrants future study. Whether these patterns are con-
sistent across individual females also warrants future 
study, given the high degree of inter-individual variation 
in microbiota diversity observed in other mosquito spe-
cies [44, 50, 51, 63–65, 69, 71–74].

The second goal of our study was to develop methods 
to generate axenic W. smithii larvae that can thereafter 
be selectively recolonized with known microbial taxa 
and assemblages (i.e., to produce gnotobiotic larvae) in 
the laboratory. We then used these methods to demon-
strate our ability to use axenic and gnotobiotic larvae to 
examine the impact of W. smithii- and pitcher-associated 
microbiota on the growth and development of W. smithii 
larvae to the adult stage. We decided to focus on larval 
development as our fitness outcome of interest for sev-
eral reasons. First, previous research in anautogenous 
(blood-feeding) and autogenous (non-blood-feeding) 
species spanning the phylogenetic breadth of the mos-
quito family Culicidae suggests that most (if not all) mos-
quitoes require a living gut microbiota to develop from 
larvae into adults under natural conditions [19, 44, 53, 75, 
76]. Research in Aedes aegypti further indicates that gut 
microbes regulate mosquito development by inducing 
gut hypoxia, stabilization of hypoxia-inducible transcrip-
tion factors (HIFs), and activation of signaling pathways 
with roles in larval growth and molting [77, 78]. It was 
therefore of fundamental interest to understand whether 
the symbiotic association of W. smithii with S. purpurea 

has relaxed the requirement for a living gut microbiota 
for development as previously observed in other mos-
quito species. Second, adult body size in mosquitoes 
and other insects is largely determined by larval nutri-
tion and developmental conditions, and adult females of 
autogenous mosquito species must fully rely on nutrient 
reserves acquired from feeding during the larval stage 
to produce eggs [79–82]. In this way, impacts of micro-
biota composition on larval fitness traits in mosquitoes 
has important implications for adult fitness traits such 
as individual body size, teneral reserves, fecundity, and 
longevity [19, 83]. Finally, W. smithii mosquitoes inter-
act most frequently (in space and time) with S. purpurea 
during the larval stage. Thus, whether specific microbiota 
taxa enhance or reduce W. smithii larval fitness is of gen-
eral interest to understanding the evolution and mainte-
nance of this and other symbioses.

Our results show that axenic W. smithii larvae fed steri-
lized diet under a standard photoperiod and sterile con-
ditions fail to grow beyond the first instar but develop 
normally when inoculated with the mixed community of 
bacteria present under conventional rearing conditions 
(i.e., their native microbiota). Our results also experi-
mentally demonstrate that individual bacterial isolates 
derived from naturally occurring pitchers in the field, 
or the standard laboratory model bacterium E. coli, can 
successfully colonize W. smithii larvae and persist to 
the fourth instar. However, only two of the isolates we 
assayed supported survival rates of gnotobiotic larvae to 
the pupal stage that did not differ from gnotobiotic lar-
vae recolonized by their native microbiota, and none of 
the isolates we assayed supported normal development 
as measured by both pupation rate and the development 
time of gnotobiotic larvae to pupation. While we did not 
measure gut hypoxia, HIF stabilization, larval growth 
and/or activation of specific signaling pathways previ-
ously demonstrated to be regulated by microbiota colo-
nization in other mosquito species, these results strongly 
support a conserved role for a living gut microbiota in 
regulating the development of W. smithii mosquitoes. 
This species appears to rely on environmentally acquired 
microbiota for development and is not freed of this con-
straint in spite of inhabiting the nutrient-rich environ-
ment of S. purpurea pitchers.. That (i) W. smithii first 
instars hatched from surface-sterilized eggs contain no 
bacteria or fungi, as demonstrated by our inability to gen-
erate viable cultures from pooled homogenates of axenic 
larvae or PCR amplicons using DNA template from 
axenic larvae and universal bacterial and fungal prim-
ers, (ii) almost all of the ASVs we identified in our sur-
face-sterilized larval samples were present in the water 
from which larvae were collected from, and (iii) several 
of the abundant community members we identified via 
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high-throughput sequencing were able to individually 
colonize the larval gut also strongly suggests that most of 
the bacteria we identified in whole-body W. smithii larvae 
and adults via sequencing were present in the digestive 
tract.

Previous studies in the autogenous mosquito Aedes 
atropalpus have reported similar variability in the devel-
opmental outcomes of gnotobiotic larvae colonized by 
different bacterial isolates [19]. In contrast, the anautog-
enous mosquito A. aegypti develops robustly under vari-
able monocolonized bacterial backgrounds and the same 
diet conditions [19]. The results herein therefore provide 
additional evidence to support the hypothesis that fitness 
of autogenous mosquitoes like A. atropalpus and north-
ern populations of W. smithii depends on the composi-
tion of the gut microbiota and the presence of certain 
community members. In contrast, the added nutrients 
obtained through blood feeding obviate such a depend-
ence in anautogenous species like A. aegypti. Neverthe-
less, future work is warranted to examine the robustness 
of the patterns observed herein, especially given more 
recent studies underscoring variable impacts of micro-
biota on mosquito fitness as a function of diet and other 
rearing factors in the laboratory [84]. Future studies to 
understand why (and how) certain bacteria enhance or 
reduce W. smithii fitness are also warranted. Recent stud-
ies in A. aegypti indicate that living microbes induce gut 
hypoxia and downstream activation of growth-associated 
signaling pathways by provisioning larvae with ribofla-
vin and other photosensitive B vitamins [85], although 
the efficiency of riboflavin-based hypoxia induction may 
vary across different microbial taxa and assemblages as a 
function of metabolic rate and/or synthetic capacity [75]. 
While we did not measure the growth rates and associ-
ated metabolite profiles of any of the bacterial isolates 
we assayed, the methodology developed herein strongly 
positions us to address such questions in the future.

Conclusions
In this study, we used high throughput 16S rRNA gene 
amplicon sequencing to characterize microbiota diversity 
in field and laboratory populations of the pitcher plant 
mosquito, W. smithii, for the first time. We then con-
ducted controlled experiments in the laboratory to better 
understand the factors shaping microbiota acquisition, 
persistence, and function in W. smithii mosquitoes. Our 
results support a dominant role for the pitcher environ-
ment in shaping microbiota diversity in W. smithii larvae, 
while also indicating that pitcher-associated microbiota 
can persist in and be dispersed by adult W. smithii mos-
quitoes. We also demonstrate the successful generation 
of axenic mosquitoes that can be selectively recolonized 
with one or more known bacterial species in order to 

study microbiota function. This approach lays the foun-
dation for future work to understand how microbes 
shape the structure and stability of this model microsys-
tem, with translational significance to other ecosystems 
of ecological, public health, and agricultural concern. 
That the axenic larvae generated in this study also failed 
to grow or molt under normal rearing conditions also 
contributes to a growing body of literature pertaining 
to microbial impacts on the physiology and evolution of 
mosquitoes.
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containing gnotobiotic larvae recolonized by their native microbiota. 
Adults emerging from trays containing larvae reared conventionally in our 
standard laboratory colony served as the positive control. A minimum of 
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ing first and third quartiles, respectively. Plots of the same color represent 

https://doi.org/10.1186/s42523-022-00164-1
https://doi.org/10.1186/s42523-022-00164-1


Page 13 of 15Arellano and Coon  Animal Microbiome            (2022) 4:13  

results from replicate plates (or trays) using larvae derived from independ-
ent cohorts of eggs. No significant differences between replicates were 
detected for adult females (NS). Size likewise did not differ between treat-
ments for adult females (NS; Mann–Whitney U test, p > 0.05) after pooling 
replicates, while gnotobiotic adult males were marginally smaller than 
conventional males even after accounting for variation between replicates 
(*; Mann–Whitney U test, p < 0.05).
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