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Expressions of resistome is linked to the key 
functions and stability of active rumen 
microbiome
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Abstract 

Background: The resistome describes the array of antibiotic resistant genes (ARGs) present within a microbial 
community. Recent research has documented the resistome in the rumen of ruminants and revealed that the type 
and abundance of ARGs could be affected by diet and/or antibiotic treatment. However, most of these studies only 
assessed ARGs using metagenomics, and expression of the resistome and its biological function within the microbi-
ome remains largely unexplored.

Results: We characterized the pools of ARGs (resistome) and their activities in the rumen of 48 beef cattle belonging 
to three breeds (Angus, Charolais, Kinsella composite hybrid), using shotgun metagenomics and metatranscriptom-
ics. Sixty (including 20 plasmid-associated) ARGs were expressed which accounted for about 30% of the total number 
of ARGs (187) identified in metagenomic datasets, with tetW and mefA exhibiting the highest level of expression. In 
addition, the bacterial hosts of 17 expressed ARGs were identified. The active resistome was less diverse in Kinsella 
composite hybrid than Angus, however, expression of ARGs did not differ among breeds. Although not associated 
with feed efficiency, the total abundance of expressed ARGs was positively correlated with metabolic pathways and 
‘attenuation values’ (a measurement of stability) of the active rumen microbiome, suggesting that ARGs expression 
influences the stability and functionality of the rumen microbiome. Moreover, Ruminococcus spp., Prevotella rumini-
cola, Muribaculaceae spp. and Collinsella aerofaciens were all identified as hosts of expressed ARGs, possibly promoting 
the dominance of these carbohydrate degraders within the rumen microbiome.

Conclusions: Findings from this study provide new insight into the active rumen resistome in vivo, which may 
inform strategies to limit the spread of ubiquitously found ARGs from the rumen to the broader environment without 
negatively impacting the key functional outcomes of the rumen microbiome.
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Background
Antimicrobials have been widely used in food pro-
ducing animals since the 1950s to enhance feed effi-
ciency, accelerate growth, and control infectious 
diseases [1]. It is estimated that antimicrobials used to 

prevent/treat disease and/or promote growth in chick-
ens, pigs, and cattle will increase from 63,151 tonnes 
in 2010 to 105,596 tonnes in 2030 [2]. Antimicrobial 
consumption or administration in livestock has been 
proposed to select for antimicrobial resistant bacteria 
within the digestive tract of livestock and in aquatic/
soil environments [3, 4]. The development of antimi-
crobial resistant bacteria in food-producing animals 
not only reduces the therapeutic efficacy of antimi-
crobials against infectious disease, but also selects for 
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reservoirs of antimicrobial resistant genes (ARGs) that 
could be transferred to bacteria and infect humans via 
the food production chain or through the environment 
[5–7]. Therefore, reducing antimicrobial resistance 
and preventing antimicrobial residues from entering 
the food production chain is a priority for the livestock 
sectors to address food security, food safety, and public 
health concerns [8].

In fact, antimicrobial resistance (AMR) in bacteria is 
an ancient phenomenon and was present long before 
the widespread clinical and agricultural use of anti-
microbials [9]. Numerous ARGs encode for resistance 
to an array of antimicrobials that microbes produce 
to compete and survive within complex ecological 
systems [10]. Recent research has documented the 
resistome in the rumen of ruminants including beef 
cattle [11–13], dairy cattle [13, 14], and sheep [15], 
and revealed that the profiles and abundance of ARGs 
within the resistome can be affected by diet [12] and/
or antibiotic treatment [11]. However, most of these 
studies only assessed these profiles at a genomic level 
using metagenomics and rumen samples collected 
from a limited number of animals. Compared with 
the mere presence of a gene, its expression is a better 
proxy for gauging functional activity within biological 
ecosystems [16]. A recent study assessed the resistome 
within wastewater at both metagenomic and metatran-
scripomic levels and revealed that the abundance of 
ARGs and their transcripts were not highly correlated 
[17]. However, the extent to which ARGs are expressed 
in the gut of mammals such as rumen of cattle is 
largely unknown, especially when it is not under the 
selective pressure of antimicrobials.

In this study we assessed the presence (metagenomic 
profiling) and expression (metatranscriptomic pro-
filing) of ARGs in the rumen of 48 beef steers raised 
without antimicrobials used in human medicine. To 
date, read-based and assembly-based approaches are 
two main methods for profiling the resistome, with no 
consensus on a single approach, as both have trade-
offs [18]. Therefore, we applied both approaches in 
this study with the aim to comprehensively describe 
the ARGs profiles within resistomes as well as their 
expression in the rumen. We hypothesized that (1) 
rumen resistome may be affected by host factors such 
as breed; (2) not all ARGs are expressed, and those 
expressed may play a role in the function or stability of 
the rumen microbiome; (3) expression of ARGs could 
be associated with feed efficiency in beef cattle, as we 
previously reported that active rumen microbiome was 
linked to feed efficiency in beef cattle [19].

Results
Analysis of the rumen metagenomic datasets
The average number of metagenomic reads was higher 
in KC (59,835,594) than CH (49,746,190) (P = 0.009, 
d = 0.40; Additional file  1: Table  S1). The proportion 
of metagenomic reads aligned to bovine genome was 
0.13% ± 0.004% (average ± standard deviation), which did 
not differ among breeds (P = 0.134, d = 0.52). The aver-
age number of ARG-like reads (KC: 54,385; AN: 47,319; 
CH: 49,880) and their proportion of total metagenomic 
reads (KC: 0.090; AN: 0.088; CH: 0.098) did not differ 
among breeds (P = 0.407, d = 0.15 and P = 0.749, d = 0.40; 
Additional file  1: Table  S1). After metagenomic assem-
bly, a total of 2,776,208 contigs with an average length of 
3515 bp (max 446,148 bp) and a N50 length of 6065 bp 
were generated. An average of 70.4%, 78.4%, and 75.2% of 
reads were mapped to their assemblies for KC, AN, and 
CH, respectively. The proportion of mapped metagen-
omic reads was higher in AN than KC (P = 0.002, 
d = 0.26). The average number of metagenomic contigs 
(P < 0.001; d = 0.06) and ARG-like contigs was higher 
(P < 0.001; d = 0.26), while the proportion of ARG-like 
contigs was lower (P < 0.001; d = 0.20) in KC compared 
with the other two breeds (Additional file 1: Table S1).

Profiles of ARGs in the rumen microbiome and plasmids
In total, we identified 183 individual ARGs belonging to 
18 classes using a read-based approach, and 104 individ-
ual ARGs belonging to 16 classes using assembly-based 
methods (Table 1). The abundances (calculated as reads/
contigs per million of total reads/contigs) of individual 
ARGs identified using the two approaches are reported in 
Additional file 1: Table S2 and S3. Eighty-six ARGs were 
identified using both approaches (Additional file  2: Fig. 
S1a), and most were more often identified using read- vs 
assembly-based approach (Additional file 2: Fig. S1b). Of 
the 17 unique ARGs identified using an assembly-based 
approach, most were only identified in less than 5 sam-
ples except for vanU (Additional file  2: Fig. S1c). Based 
on these findings, we concluded that results from a read-
based approach were more comprehensive and as a result 
this approach was used for downstream analysis.

Tetracycline, macrolide-lincosamide-streptogramin 
(MLS), and aminoglycoside classes accounted for the 
majority of ARGs within all samples (Fig. 1a). Eight ARGs 
belonging to tetracycline, MLS, and aminoglycoside 
classes were identified in all samples, and represented 
90% of the abundance of ARGs (Fig. 1b). The PCR anal-
ysis confirmed the prevalence of tetQ, tetW, and mefA 
in extracted DNA (Additional file  2: Fig. S2). We fur-
ther found that 90 ARGs, representing 15 classes were 
plasmid-associated (Additional file  1: Table  S4), which 
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accounted for 6.25% ± 0.30% of total ARGs (Fig. 1c). Sim-
ilarly, tetracycline, aminoglycoside, and MLS were the 
most abundant classes (Additional file  2: Fig. S3a), and 
7 ARGs (tetW, aadA, tetO, tet44, tetM, vatB, and tet32) 
accounted for 85% of the total plasmid-associated ARGs 
(Additional file 2: Fig. S3b).

Analysis of the rumen metatranscriptomic datasets
The average number of metatranscriptomic reads 
(KC: 6,277,349; AN: 5,649,606; CH: 5,464,699), ARG-
like transcripts (KC: 308; AN: 324; CH: 259) and their 
proportion of total metagenomic reads (KC: 0.005; 
AN: 0.006; CH: 0.005) was not different among breeds 
(P = 0.161, d = 0.55; P = 0.442, d = 0.10; P = 0.668, 
d = 0.44, respectively; Additional file  1: Table  S5). The 
proportion of metatranscriptomic reads aligned to 
bovine genome was 0.05% ± 0.0008%, which did not 
differ among breeds (P = 0.937, d = 0.18). After the 
assembly of the metatranscriptome data, a total of 
28,005 contigs with an average length of 1611 bp (max 

9788 bp) and a N50 length of 1520 bp were generated. 
Mapped reads did not differ (P = 0.401, d = 0.01) among 
breeds, with an average of 82.6%, 84.0%, and 84.0% 
of reads for KC, AN, and CH, respectively. The aver-
age number of metatranscriptomic contigs (P = 0.065, 
d = 0.44) and ARG-like contigs (P = 0.062, d = 0.45) 
tended to be higher in AN than CH (Additional file 1: 
Table  S5). The proportion of ARG-like metatran-
scriptomic contigs of total metatranscriptomic con-
tigs did not differ (P = 0.591, d = 0.05) among breeds 
and was 0.145% ± 0.046% (SD), 0.159% ± 0.038%, and 
0.155% ± 0.035% for KC, AN, and CH respectively 
(Additional file 1: Table S5).

Profiles of expressed ARGs in the active rumen microbiome 
and plasmids
Sixty and 37 expressed ARGs belonging to 10 classes were 
identified using read- and assembly-based approaches, 
respectively (Table  1). Notably, the same number (60) 
of expressed ARGs were identified using either the 
SARG database or the ARG-like sequences identified in 
metagenomic datasets as the reference database. Abun-
dances of expressed ARGs identified using these two 
approaches are shown in Additional file 1: Table S6 and 
S7. Twenty-three expressed ARGs were identified using 
both approaches (Additional file  2: Fig. S4a), with more 
being identified in samples using read- than assembly-
based approaches (Additional file 2: Fig. S4b). Of the 14 
unique expressed ARGs identified using the assembly-
based method, only tetP were expressed in more than 
half of the samples (Additional file  2: Fig. S4c). Conse-
quently, we used the read-based approach in subsequent 
downstream analysis of expressed ARGs.

Tetracycline (tetW, tet40, tetQ, tetM) and MLS (mefA) 
classes made up the majority of expressed ARGs from 
all samples (Fig.  2a and b). Indeed, only 0.61% ± 0.03% 
(calculated as the number of ARG-like reads of a sample 
identified in metatranscriptomic data/number of ARG-
like reads of the same sample identified in metagenomic 
data) of ARGs were expressed, with multidrug (MDR, 
n = 28), MLS (n = 48), tetracycline (n = 48), and amino-
glycoside (n = 37) classes being most prevalent (Fig. 2c). 
Of the expressed ARGs, tet40, mefA, tetM, tetW, and 
tetQ were the most prevalent in all samples (Fig. 2d). The 
PCR analysis confirmed the expression of tetQ, tetW, 
and mefA in the cDNA of the majority of samples (Addi-
tional file 2: Fig. S2). Twenty of the expressed ARGs were 
plasmids-associated and represented 7 different classes 
(Additional file 1: Table S8). Transcripts associated with 
tetracycline ARGs were the most prevalent (Additional 
file 2: Fig. S5a), with plasmid-associated tetW being iden-
tified in all samples (Additional file 2: Fig. S5b).

Table 1 Number of individual ARGs identified using read- and 
assembly-based approaches in 48 rumen samples of beef steers

MLS macrolides-lincosamides-streptogramins; MDR multi-drug resistant

ARG classes Metagenomic profiling Metatranscriptomic 
profiling

Read-based Assembly-
based

Read-based Assembly-
based

Total 183 103 60 37

 Aminoglyco-
side

18 10 5 1

 Bacitracin 3 2 1 2

 Beta-lactam 29 7 9 1

 Bleomycin 1 – – –

 Carbomycin 1 1 – 1

 Chloram-
phenicol

5 3 – –

 Fosfomycin 1 1 – –

 Fosmidomy-
cin

1 1 – –

 Kasugamycin – 1 – –

 MLS 29 16 10 3

 MDR 42 20 13 9

 Polymyxin 1 – 1 –

 Quinolone 2 1 – –

 Rifamycin 2 1 – –

 Sulfonamide 2 3 1 1

 Tetraceno-
mycin

1 16 – –

 Tetracycline 23 – 14 13

 Trimethoprim – 2 – –

 Unclassified 7 3 2 2

 Vancomycin 15 15 4 4
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Effect of breed on diversity and abundances of ARGs 
and expressed ARGs in the rumen microbiome
The ARGs belonging to tetracycline and MLS classes 
were predominant in the rumen, regardless of breeds 
(Fig.  3a). The Chao1 index of ARGs was lower in KC 
than AN and CH (P = 0.007 and 0.002, d = 0.24), while 
the Simpson’s index of ARGs did not differ among 
breeds (P = 0.512, d = 0.29; Fig. 4a). Principle Coordinate 

Analysis (PCoA) showed that the profiles of ARGs also 
did not separate by breed (PERMANOVA P = 0.241; 
Fig. 4b). The KC (125) harbored fewer subtypes of ARGs 
compared with AN (153) or CH (136) (Additional file 1: 
Table S9). The abundance of total ARGs in KC was also 
lower than that in the other two breeds (Fig. 4c). Specifi-
cally, the abundance of several ARGs belonging to ami-
noglycoside (aadA, aadE, ant(9)-I), bacitracin (bacA), 

Fig. 1 Profiles of resistome in the rumen of 48 beef cattle. a The rumen resistome is predominant by ARGs belonging to tetracycline, MLS, and 
aminoglycoside classes, and ‘others’ include other 15 classes. b Proportion of 8 predominant ARGs and ‘others’ include other 179 individual ARGs. c 
Proportion of plasmid-associated ARGs in the total ARGs. ARG, antimicrobial resistant gene; MLS, macrolide-lincosamide-streptogramin
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MLS (ermA, ermB, ermG, lsa, macB), tetracycline (tet40), 
and vancomycin (vanG, vanS) (Fig.  4d) classes in KC 
were lower than in AN or CH.

The KC (64) harbored fewer subtypes of plasmid-asso-
ciated ARGs compared with AN (74) or CH (67) (Addi-
tional file  1: Table  S10). No difference was observed in 

Fig. 2 Profiles of active resistome in the rumen of 48 beef cattle. a The active rumen resistome is predominant by ARGs belonging to tetracycline 
and MLS classes, and ‘others’ include other 8 classes. b Proportion of 5 predominant expressed ARGs and ‘others’ include other 55 individual 
expressed ARGs. c Proportion of major expressed ARG classes. d Proportion of major expressed ARGs. ARG, antimicrobial resistant gene; MDR, 
multidrug; MLS, macrolide-lincosamide-streptogramin
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the abundance of total plasmid-associated ARGs among 
breeds. The KC had a higher abundance of aadE as well 
as vatB than AN, and ant(9)-I, aph(3″)-I, as well as tet44 
than CH (Additional file 2: Fig. S6). In contrast, the abun-
dance of ermB, ermG, and lnuA was lower in KC than the 
other two breeds (Additional file 2: Fig. S6).

The Chao1 index of expressed ARGs was lower in KC 
than AN (P = 0.024, d = 0.55), with no difference in the 
Simpson’s diversity among breeds (P = 0.541, d = 0.24; 
Additional file  2: Fig. S7a). The PCoA based on Bray–
Curtis distance showed no clustering of expressed ARGs 
within the resistome among breeds (PERMANOVA 
P = 0.423; Additional file 2: Fig. S7b).

Metatranscriptomic analysis also showed that ARGs 
belonging to tetracycline and MLS classes were pre-
dominant in the expressed rumen resistome of all 
three breeds (Fig.  3b). A similar number of subtypes of 
expressed ARGs were identified in KC (44, including 26 
plasmid-associated), AN (42, including 31 plasmid-asso-
ciated), and CH (42, including 26 plasmid-associated), 
among which 30 (including 18 plasmid-associated) were 
identified in all breeds (Additional file  1: Table  S11 and 
S12; Additional file  2: Fig. S7a and S7b). Breed did not 
impact the abundance of expressed ARGs (including 
plasmid-associated).

Investigation of the bacterial hosts of expressed ARGs
The ARG-containing contigs generated by metatran-
scriptomic assembly were used to predict the bacterial 
origin of expressed ARGs. A total of 420 ARG-con-
taining contigs were assigned to a customized refer-
ence database (see Methods) and the bacterial hosts of 
342 contigs were identified as belonging to Firmicutes 
(32.4%), Bacteroidetes (22.1%), Actinobacteria (16.4%), 
and Proteobacteria (8.1%) (Fig.  5a). For the bacterial 
hosts identified in Actinobacteria, the genus Collinsella 
(52.2%) accounted for more than half of the abundance, 
followed by Bifidobacterium (13.0%) (Fig. 5a). Muribac-
ulaceae bacterium DSM 108,610 (14.0%) was the most 
abundant genus in the Bacteroidetes, followed by Bacte-
roides (10.7%) and Prevotella (9.7%) (Fig. 5a). In the Fir-
micutes, Bacillus, Ruminococcus, and Turicibacter were 
the most abundant genera (Fig. 5a). The 342 assembled-
genomes were found to contain 17 expressed ARGs, 
among which mefA was the most abundant, followed 
by tetW and tetQ (Additional file  1: Table  S13). Nota-
bly, we identified 8 bacterial species/strains that could 
potentially express bacA, bcrA, macB, mefA, tet40, and 
tetW (Fig. 5b). For example, Muribaculaceae bacterium 
DSM 108,610, Bacteroides fragilis, Bacillus cereus, and 
Turicibacter sp. H121 potentially expressed mefA, while 

Fig. 3 Abundance (normalized into reads per million of reads) of classes of ARGs and ARG transcripts in the rumen of KC, CH, and AN beef steers. a 
Abundance of 13 classes of ARGs. b Abundance of 8 classes of expressed ARGs. ARG, antimicrobial resistant gene; KC, Kinsella composite hybrid; AN, 
Angus; CH, Charolais; MLS, macrolide-lincosamide-streptogramin; MDR, multidrug
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Collinsella aerofaciens and Prevotella ruminicola 23 
potentially expressed tetW.

Using only the flanking regions of ARGs from the 
ARG-containing metatranscriptomic contigs, a total of 
97 contigs were assigned to a customized reference data-
base and the bacterial hosts were identified as belonging 
to Firmicutes (37.1%), Actinobacteria (25.8%), Bacte-
roidetes (19.6%), and Proteobacteria (4.1%) (Additional 
file  2: Fig. S8). For the bacterial hosts identified in Act-
inobacteria, the genus Collinsella (84.0%) accounted for 
more than half of the abundance, followed by Bifidobac-
terium (8.0%) (Additional file 2: Fig. S8). Muribaculaceae 
bacterium (26.3%) was the most abundant genus in the 
Bacteroidetes, followed by Muribaculum (21.0%) and 
Phocaeicola (15.8%) (Additional file 2: Fig. S8). In the Fir-
micutes, Bacillus, Ruminococcus, and Turicibacter were 
the most abundant genera (Additional file 2: Fig. S8). The 
97 metatranscriptomic-assembled genomes were found 
to contain 13 expressed ARGs, among which mefA was 
the most abundant, followed by tetW (Additional file  1: 
Table S14). Notably, we identified 6 bacterial genera/spe-
cies (Muribaculaceae, Bacteroides fragilis, Ruminococcus 

spp, Bacillus cereus, and Turicibacter spp., and Collin-
sella aerofaciens) that could potentially express mefA or 
tetW (Additional file 1: Table S14). In summary, bacterial 
species that were identified using ARG flanks were all 
included in the list of species identified using full-length 
contigs.

Functional potentials of expressed ARGs in the rumen 
microbiome
We first investigated if expressed ARGs contribute to 
the annotated function of the active rumen microbiome. 
Based on Spearman correlation analysis, we found sig-
nificant correlations between the abundance of 19 KEGG 
pathways mainly related to ‘Metabolism’, ‘Cellular Pro-
cesses’ as well as ‘Genetic Information Processing’ and 
the abundance of 8 subtypes of expressed ARGs, includ-
ing mefA, tetW, tet40, tetO, tetM, tetracycline resistance 
protein (trp), tetO, and vatB (Fig.  6). Notably, positive 
correlations were observed between the abundance of 
most subtypes of expressed ARGs and ‘Metabolism’ 
pathways including ‘Two component system’, ‘Oxidative 
phosphorylation’, and ‘Purine metabolism’, while negative 

Fig. 4 Difference in diversity annd abundance (normalized into reads per million of reads) of ARGs in the rumen of KC (in purple), CH (in green), and 
AN (in yellow) beef steers. a Difference in Chao1 index and Simpson’s index among breeds. b PCoA based on Bray–Curtis distance. c Difference in 
the abundance of total ARGs among breeds. d Difference in the abundance of 12 ARGs belonging to aminoglycoside, bacitracin, MLS, tetracycline, 
and vancomycin classes among breeds. ARG, antimicrobial resistant gene; KC, Kinsella composite hybrid; AN, Angus; CH, Charolais; MLS, macroli
de-lincosamide-streptogramin; MDR, multidrug. PCoA, principal coordinate analysis. **P < 0.05 by Kruskal–Wallis test followed by multiple pairwise 
comparisons using Dunn’s test with Benjamini–Hochberg method for false discovery rate control



Page 8 of 17Ma et al. Animal Microbiome            (2022) 4:38 

correlations were identified between those and ‘Salmo-
nella infection’, ‘Ribosome’, as well as the ‘HIF-1 signaling 
pathway’ (Fig. 6). We then analyzed if the expression of 
the resistome was associated with feed efficiency in beef 
cattle. However, no significant correlation was observed 
between the abundance of total expressed ARGs or any 
individual ARGs and residual feed intake (RFI) or feed 
conversion ratio.

To test our hypothesis that an active resistome may 
play a role in conferring stability to the rumen micro-
biome, we calculated the attenuation value, a meas-
urement of microbial stability. The Chao1 index of 
the active resistome was positively correlated with the 
attenuation value (rho = 0.46, P < 0.05; Fig. 7a). In addi-
tion, we also found that the abundance of expressed 

Fig. 5 The bacterial origin of active resistome. a Proportion of predicted bacterial hosts of expressed ARGs at phylum level. b Predicted bacterial 
hosts of 6 expressed ARGs including tetW, tet40, mefA, macB, bcrA, and bacA and their relative abundance. ARG, antimicrobial resistant gene
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Fig. 6 Heatmap showing the Spearman correlations between the abundance (normalized into reads per million) of KEGG pathways and the 
abundance of 8 subtypes of expressed ARGs. ARG, antimicrobial resistant gene; trp, tetracycline resistance protein
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tetracycline class (rho = 0.47, P < 0.05; Fig. 7b) and tetW 
(rho = 0.47, P < 0.05; Fig.  7c) was positively correlated 
with the attenuation values of the active rumen micro-
biome, indicating that it may also contribute to func-
tional stability.

Discussion
Metagenomic analysis revealed that the abundance of 
ARGs in the rumen of beef steers that did not receive any 
antimicrobials other than monensin, was predominated 
by tetracycline, MLS, and aminoglycosides. We detected 
broader ARG profiles using a read-based approach (187 
ARGs belonging to 18 classes) in the rumen, than that 
observed in a previous study where ARGs in beef cattle 
receiving monensin and tylosin were estimate using an 
assembly-based approach [11]. These researchers failed 
to detect aminoglycoside or β-lactam ARGs in any of 
the 5 ruminal samples examined. While Auffret et  al. 
[12] detected macrolide, chloramphenicol, β-lactam, and 
aminoglycoside ARGs in the rumen of antimicrobial-
free beef cattle under similar feeding condition to our 
study, they did not detect genes conferring resistance 

to vancomycin. More recently, Xue et  al. [14] described 
a resistome containing 26 classes of ARGs using rumen 
digesta samples collected from 49 dairy cows that did not 
receive antimicrobials, with tetracycline being the most 
predominant, followed by glycopeptide and fluoroqui-
nolone ARGs. The variation of ARGs profiles detected 
among studies could be due to difference in animal, 
environment, diet, antimicrobial use (AMU) as well as 
metagenome data nature and bioinformatic resources/
tools. In addition, the detected ARGs are similar to 
those reported in fecal samples of beef cattle adminis-
tered in feed antimicrobials (ionophores, chlortetracy-
cline, or tylosin) [20] or not [21]. This suggests that the 
profiles of ARGs in the rumen are consistent with those 
found in feces. It should be noted that tetracycline and 
macrolide are the most frequently used antimicrobials 
in beef industry in Canada [22]. Such a practice could 
have resulted in these ARGs being the key components 
of the core resistome in the rumen, even in the absence of 
direct selective pressure as result of AMU.

Considering that the presence of genes does not neces-
sarily directly correlate with their expression in biological 

Fig. 7 Functions of active resistome. a Spearman correlation between the Chao1 index of expressed ARGs and attenuation values of active 
rumen microbiota. b Spearman correlation between the abundance of expressed ARGs in tetracycline class and attenuation values of active 
rumen microbiota. c Spearman correlation between the abundance of expressed tetW and attenuation values of active rumen microbiota. ARG, 
antimicrobial resistant gene
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systems, direct measurement of transcripts based on 
metatranscriptomics is an important complementary 
approach to describing the functionality of microbi-
omes. In our study, the abundance of expressed ARGs 
was about 30% of the whole resistome, suggesting that 
most ARGs were not transcribed and functional in the 
rumen of these cattle at the time of sampling. In fact, the 
expression of ARGs is not directly linked to the presence 
of ARGs as previously shown in wastewater microbiomes 
[17]. The expression of tet40, mefA, tetM, tetW, and tetQ 
was observed in all samples, suggesting that these ARGs 
may constitute the ‘core’ active resistome in the rumen 
of the steers investigated in our study. However, it is 
not clear if and how this expression pattern may change 
if antimicrobials are administered. To our knowledge, 
few studies have examined the presence and expression 
of ARGs simultaneously in microbiomes within food-
producing animals. Although Sabino et al. [23] analyzed 
the expression of rumen ARGs, only 15 samples were 
used (5 dairy cattle, 5 beef cattle, and 5 sheep) and their 
aim was to confirm the expression of ARGs found in 435 
ruminal bacteria and archaea reference genomes in silico. 
These researchers did not link the expression of ARGs 
back to the presence of those ARGs in the same rumen 
microbome using metagenomic data. More recently, 
the resistome in the chicken and pig gut were analyzed 
using both metagenomic and metatranscriptomic data, 
but only 6 fecal samples were used to define the gut 
resistome of each species [24]. In this regard, more effort 
is needed to detect and validate our findings based on 
both metagenomic and metatranscriptomic analysis. In 
addition, it should be noted that the average insert size 
varied between the DNA and cDNA libraries due to the 
fact that with an average gene length of ~ 1 kb in prokar-
yotes, and with selective expression, the overall tran-
scriptome is more fragmented with essentially smaller 
average fragment size as compared to genomic DNA 
fragments that are generated due to DNA shearing. This 
difference may potentially lead to smaller average insert 
size of the cDNA-based library compared to a metagen-
omics DNA-based library. Smaller insert sizes may also 
impact the quality of reads and the downstream analy-
sis of functional profiles (such as resistome) of Illumina 
sequencing output [25, 26]. Therefore, comparing com-
munities across multiple experiments may require addi-
tional covariates (e.g., library preparation technique) in 
statistical design to account for these known differences 
and avoid potential biases. It should also be noted that 
there is still a lack of direct comparison of metagenomic 
and metatranscriptomic datasets from the same sample, 
and our results advanced the knowledge on what are key 
factors (e.g., sequencing depth, N50 length, library size) 
in affecting the data analysis outcomes as a whole.

Plasmids are mobile genetic elements that are abun-
dant in the bacterial populations of bovine rumen [27], 
and play a major role in the spread of AMR through 
horizontal gene transfer [28]. Plasmid-mediated transfer 
of ARGs is the most common route for their acquisition 
by bacteria [29]. Metagenomic approaches have been 
used to characterize plasmid encoded ARGs in several 
non-biological habitats such as activated sludge [30, 31] 
as well as in the human gut [32]. However, the profiles 
and expressions of plasmid-associated ARGs have not 
been examined in food-producing animals. The identifi-
cation of aadA and tetW being the most abundant plas-
mid-associated ARGs and the expression of tetW highest 
among all ruminal plasmid-associated ARG transcript, 
suggests that plasmid associated ARGs should be a focus 
of investigations on the impact of AMU in livestock on 
the resistome. The aadA gene has been detected on IncA/
C2 plasmids in both Escherichia coli and Salmonella 
enteric [33]. More specifically, aadA14 was first identified 
as plasmid borne in a bovine respiratory disease-associ-
ated pathogen, Pasteurella multocida [34]. It has been 
reported that many of the tetracycline resistant genes 
are associated with mobile plasmids [35], among which 
tetW has been proven to be transferable among the rumi-
nal bacteria, i.e., Butyrivibrio fibrosolvens, Selemonas 
ruminitanium, and Mitsuokella multiacidus [36]. It has 
been proven that rumen plasmidome, which represents 
all detectable plasmids in rumen, encodes a wide array 
of genes with roles in carbohydrate, protein and amino 
acids metabolism [27]. Therefore, we speculate that the 
plasmids that carry expressed ARGs likely also carry 
genes that play a role in fermentation. Recently, linking 
a wide range of bacterial plasmids to the microbiome in 
wastewater samples has been undertaken using the Hi-C 
method [37], which can link plasmids back to their bac-
terial host [38]. These approaches could also be applied 
to link plasmid-associated ARG to their rumen bacteria, 
which may help elucidate the contribution of plasmids to 
the transmission of ARGs within the rumen.

It has been reported that the prevalence and abun-
dance of ARGs in the gut of cattle is affected by diet and 
host. For example, dietary transition from milk replacer 
to a starter diet led to alternation in the fecal resistome of 
dairy calves [7]. In addition, the diversity and abundance 
of total ARGs were higher in the rumen of beef cattle fed 
high concentrate than those fed high forage diet, with 
chloramphenicol and aminoglycoside resistance genes 
being predominant in forage- and concentrate-fed cat-
tle, respectively [12]. On the other hand, several studies 
have shown that the gut microbiome is heavily influ-
enced by the host animal [39–41], suggesting that host 
may also play a key role in shaping the rumen resistome. 
In this study, all beef steers were raised under the same 
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dietary and environmental conditions, suggesting that 
the prevalence and expression of ARGs could have been 
influenced by host genetics. Contrary to the findings of 
Auffret et al. [11], who did not observe a breed effect on 
the abundance of microbiota or ARGs in the rumen of 
beef cattle, we observed a reduced prevalence of ARGs in 
the rumen of crossbred (KC) compared to purebred (AN 
or CH) cattle. Cohen’s d is a common way to measure 
the size of an effect, which is classified as small (d = 0.2), 
medium (d = 0.5), and large (d ≥ 0.8) [42]. Although 
there is significant difference in the average number of 
metagenomic reads and Chao1 index of ARG, only small 
to medium effect size was identified, suggesting that 
sequencing depth may not be a potential confounding 
factor in the comparison of the breed effect on diversity 
and abundance of ARGs. To our knowledge, there is no 
study reporting how host genetic factors may impact 
the gut resistome in mammalian species. In beef cattle, 
understanding the ‘mammalian host-resistome’ associa-
tion may be a prerequisite to select breeds with high feed 
efficiency and a lower risk of transmission ARG into the 
environment.

The positive correlation between the abundance of 
multiple subtypes of expressed ARGs and ‘Metabolism’ 
pathways suggest that ARGs may play a role in regulat-
ing bacterial metabolism. Indeed, ARGs, such as those 
encoding for efflux pumps may have roles in regulating 
microbial physiology and metabolism of amino acids, 
fatty acids or nucleotides, in addition to their intrinsic 
role in antimicrobial resistance [43–45]. Bacteria belong-
ing to Muribaculaceae spp. encode enzymes that degrade 
plant hemicellulose and pectin [46]. Collinsella aero-
faciens has been reported to be abundant in the rumen 
of low-methane yield sheep [47], which could ferment 
a range of different carbohydrates such as starch [48]. 
Prevotella ruminicola [49] and Ruminococcus spp. [50, 
51] are also prevalent fiber degraders within the rumen. 
Our findings raise the possibility that expression of ARGs 
could impact the relative contribution of these species 
to ruminal fiber and starch digestion. Knowledge of the 
bacterial hosts of expressed ARGs could play an essential 
role in designing strategies to limit the spread of ARGs 
via manipulation of the rumen microbiome. Despite 
these findings, it should be noted that a large proportion 
of hosts of expressed ARGs could not be taxonomically 
classified or could only be identified at the phylum/fam-
ily level. Considering the fact that when expressed, the 
transcript of a gene does not contain extensive flanking 
regions of a gene coding sequence (cds) except for the 
5′ untranslated region (5′UTR) until the transcription 
start site upstream of an individual gene or the first cds 
in an operon where the member genes of the operon 
are transcribed together, and a small 3′ termination 

(rho-dependent or independent) signal downstream of 
an individual gene cds or the last cds of an operon, it is 
challenging to predict bacterial origin from metatran-
scriptomic assemblies. However, for certain genomic 
loci in prokaryotes where gene/operon transcripts over-
lap and if those loci happen to carry an ARG, the result-
ing assembled long ARG-carrying contigs may lead to a 
better prediction of bacterial species. This could be the 
case of the 97 ARG-containing metatranscriptomic con-
tigs identified as active bacterial hosts using only the 
flanking regions that were not mobile genetic elements 
or partial ARGs. Conversely, although metagenomic 
assembled ARG-carrying contigs potentially harboring 
contiguous sequences of the host bacteria could provide 
better prediction of bacterial species, ARGs present in 
those contigs may or may not be expressed making the 
functionality of ARGs within the rumen microbiome 
questionable. In this regard, more effort is needed to 
develop parallel metagenomics and metatranscriptomic 
approaches to identify functional ARGs and their host 
genomic context.

We did predict that the expression of tetracycline 
class, especially tetW, was associated with the stability 
of active rumen microbiota. Stability refers to the ability 
of a microbial community to return to its original state 
after facing perturbations [52]. Higher stability (higher 
attenuation value in our study) indicates that a microbial 
community is more resilient to external perturbations 
and its functional profile is therefore less likely to change. 
Our findings suggest that a rumen microbial community 
with higher diversity or expression of tetW may be more 
resistant to external perturbations such as use of anti-
microbials or changes in diet compositions. However, as 
the correlation analysis is not able to imply causation, the 
exact role that expressed ARGs play in regulating these 
functions requires further investigation.

Conclusions
We characterized ARGs profiles including the ‘active’ 
resistome within the rumen of beef steers that were not 
administered antimicrobials other than monensine. Our 
findings demonstrated that the presence and expression 
of ARGs in the rumen are not necessarily associated with 
AMU. Although a diversity of ARGs were found in the 
rumen, about 30% (60/183) were expressed, with mul-
tiple tetracycline ARG subtypes and mefA constituting 
the ‘core’ of the active rumen resistome. Individual PCR 
analysis further validated the prevalence and expres-
sion of the core ARGs identified using metagenomic 
and metatranscriptomic sequencing. We also revealed 
that Ruminococcus spp., Prevotella ruminicola, Murib-
aculaceae spp. and Collinsella aerofaciens were the pri-
mary hosts of expressed ARGs. In addition, both breed 
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and feed efficiency exhibited a weak effect on the abun-
dance of expressed ARGs, suggesting that in the absence 
of antimicrobial use, the rumen resistome is unlikely to 
be altered by breeding programs that select cattle based 
on improved feed efficiency. We also showed that the 
active resistome in the rumen may play a role in bacterial 
metabolism as well as maintaining the stability of active 
rumen microbiome. One potential limitation of the cur-
rent study is that rumen resistome originated from cat-
tle that only received monensin. It is unclear whether 
the overall rumen resistome or its expression would 
have been if antimicrobials such as tetracyclines or mac-
rolides had been administered. In addition, variations 
in sequencing depth and library construction technique 
between metagenomic and metatranscritpomic datasets 
in our study may also impact the profiles of expressed 
resistome. Comparative analysis of transcriptional pro-
files of rumen samples originating from larger herds 
of beef or dairy cattle at different growth stages, raised 
with and without antimicrobials could provide further 
insight on the presence and expression of ARGs within 
the rumen microbiome. Considering that the N50 length 
for metatranscriptomic-assembled contigs were relatively 
short, appropriate method to identify active bacterial 
host of expressed ARGs based on metatranscriptomic 
sequencing needs further investigation. This study pro-
vides new insight into the active rumen resistome in 
the absence of antimicrobial selective pressure, generat-
ing information that could be used to develop strategies 
to limit the spread of ubiquitously found antimicrobial 
resistance from the rumen to the broader environment.

Methods
Animal experiment and sample collection
The datasets used in the current study originated from 
the study of Li et al. [53]. Briefly, ruminal digesta samples 
were collected from 48 beef steers at slaughter (range 
from 429 to 554 days of age, on average 502 ± 33 days of 
age) and snap-frozen in liquid nitrogen. The beef steers 
included three breeds: Kinsella composite hybrid (KC, 
n = 16), Angus (AN, n = 16), and Charolais (CH, n = 16). 
All steers were raised in the same feedlot conditions and 
fed the same diet, consisting of 80% barley grain, 15% 
barley silage, and 5% supplement. Cattle did not receive 
any antimicrobials other than monensin at 33 ppm in the 
diet, an ionophore that is not used in human medicine.

Metagenome and metatranscriptome sequencing
Total DNA and RNA were isolated from rumen digesta 
of 48 beef steers using the methods of Yu and Mor-
rison [54] and Li et  al. [55], respectively. After quality 
and quantity checks, metagenomic libraries of the DNA 
were constructed using TruSeq DNA PCR-Free Library 

Preparation Kit (Illumina, San Diego, CA, USA) and 
subjected to Illumina (HiSeq 2000) sequencing. After 
measurement of RNA yield and quality, samples with 
RNA integrity number (RIN) > 7.0 were used to con-
struct metatranscriptome libraries using the TruSeq 
RNA Library Prep Kit v2 (Illumina, San Diego, CA). All 
metagenomic and metatranscriptomic libraries (n = 16 
for each breed) were sequenced (1  μg of input DNA or 
cDNA library) at the McGill University and Génome 
Québec Innovation Centre (Montréal, QC, Canada) 
using an Illumina HiSeq 2000 platform (100  bp paired-
end sequencing of ~ 350 bp inserts for metagenome, and 
of ~ 140  bp cDNA fragments for metatranscriptome). 
Quality control (QC) of each dataset was performed as 
described by Li et al. [53]. Briefly, Trimmomatic (version 
0.35) [56] was used to trim artificial sequences (adapters), 
cut low quality bases (quality scores < 20), and remove 
short reads (< 50 bp). In addition, Tophat2 (version 2.0.9) 
[57] was used to remove potential host DNA and RNA 
contamination by mapping trimmed reads to the bovine 
genome (UMD 3.1).

Identification of ARGs using read- and assembly-based 
approaches
The prevalence and abundance of the rumen resistome 
of each metagenomic dataset was determined using 
read-based approach according to the instructions of 
ARG-OAP 2.0 pipeline [58]. Briefly, post-QC reads 
(paired-end) from each sample were blasted using 
BLASTX against the Structured ARG database (SARG) 
[59], comprised of the Antibiotic Resistance Genes Data-
base (ARDB), the Comprehensive Antibiotic Resistance 
Database (CARD), and the National Center for Biotech-
nology Information Non-Redundant Protein Sequence 
Database (NCBI-NR), to extract ARG-like reads. Reads 
were subsequently annotated as ARG-like reads at the 
cut-off of E value of  10−10, sequence identity of 80% and 
alignment length more than > 25 amino acids (six-frame 
translation) using the default settings. By using this cut-
off, the identification accuracy was estimated at 99.5% 
[60]. To evaluate the expression of the resistome, both 
SARG database [59] and extracted ARG-like sequences 
identified in metagenomic datasets were used as refer-
ence database to extract ARG-like transcripts from the 
metatranscriptome dataset using an ARG-OAP 2.0 pipe-
line [58]. Reads were annotated as ARG-like transcripts 
using the same cutoffs as described above.

In addition, the prevalence and abundance of the 
rumen resistome was also determined using assembly-
based approach. Briefly, metagenomic and metatran-
scriptomic assemblies were generated with post-QC 
reads for each sample using MEGAHIT (version 1.2.9) 
[61] with default parameters. Quality of metagenomic 



Page 14 of 17Ma et al. Animal Microbiome            (2022) 4:38 

and metatranscriptomic assemblies were evaluated using 
Quast (http:// cab. cc. spbu. ru/ quast/) and contigs with 
lengths less than 1000  bp in all of the assemblies were 
filtered out. The contigs were then aligned with SARG 
database using ‘diamond blastx’ [62] at the cut-off of 
E value of  10−10 and sequence identity of 80% for both 
metagenomic and metatranscriptomic sequencing.

PCR analysis of the prevalence and expression of tetQ, 
tetW, and mefA genes
All the DNA isolates (50  ng/μl) and cDNA were tested 
for the presence of antigen resistance genes by PCR. 
Individual PCRs were performed for tetW, tetQ and 
mefA. The primers and PCR conditions used were those 
described in Additional file  3: Table  S15. The PCR 
assays were conducted in a 20-μl mixture containing 2 
ul 10 × PCR buffer, 0.5 μl, 10 mM dNTP, 0.25 ul, 5 U/μl 
of Taq polymerase (Life Technologies, Foster City, CA), 
1ul, 20 pmol/μl of each primer and nuclease-free water. 
Reactions were conducted using an Vetiri 96 well thermal 
cycler (Life Technologies, Foster City, CA). TetW, tetQ 
and mefA were amplified by subjecting DNA and cDNA 
template to the following conditions: an initial denatur-
ation for 5  min at 94℃; then 30 cycles of 94℃ for 30  s, 
annealing for 30  s at different temperatures (Additional 
File 1: Table S13), and 72℃ for 30 s; and a final elonga-
tion for 7  min at 72℃. Finally, the PCR products were 
analyzed by gel electrophoresis using 1% (w/v) agarose in 
1 × TBE buffer under 150 V. The agarose gel was steamed 
in Sybr safe and scanned under Azure c200 image system 
(Azure Biosystems Inc, Dublin, CA).

Identification of plasmid-associated ARGs
Plasmid-associated ARG were determined using a modi-
fied ARG-OAP 2.0 pipeline. Instead of SARG database, 
post-QC reads (paired-end) from each sample were 
blasted using BLASTX against the latest A CLAssifica-
tion of Mobile genetic Elements (ACLAME) database, 
which contains information of mobile genetic elements 
including 457 bacteriophage genomes, 1109 plasmids 
and 760 prophages [63]. Plasmid associated reads and 
transcripts were then annotated at a cut-off E value 
of ≤  10−7 criteria with amino acid identity ≥ 80% and 
coverage ≥ 70%.

Identification of bacterial origin of expressed ARGs
The bacterial origins of the active resistome were pre-
dicted by assigning taxonomy to metatranscriptomic-
assembled contigs harboring ARGs using kraken2 [64]. 
First, the complete genomes for the bacterial domain 
in NCBI RefSeq (ftp:// ftp. ncbi. nlm. nih. gov/ genom es/ 
refseq/ bacte ria/) [65] was downloaded with ‘kraken2-
build –download-library bacteria –db RefSeq’ script. 

Then, the 4941 rumen-related metagenome-assembled 
genomes [66] were added to the RefSeq database with 
‘kraken2-build –add-to-library 4941.fa –db RefSeq’ 
script. The metatranscriptomic-assembled contigs with 
ARGs were subject to the ‘kraken2 –db RefSeq –threads 
32 –classified-out sample_classified –unclassified-out 
sample_unclassified -confidence 0.9 –fasta-input sam-
ple.contigs.fa –output sample.kraken’ script, where ‘Ref-
Seq’ is the customized database, ‘0.9’ is the confidence 
score (between 0 and 1). To verify the bacterial host of 
an ARG, using a parallel approach, the full ARG-contain-
ing contigs, as well as their counterparts containing the 
left-over flanking regions following the SARG database 
BLAST-based removal of ARGs from each contig, were 
annotated using kraken2. The output files were further 
analyzed using Bracken [67] with ‘bracken -d RefSeq -i 
sample.kraken.txt -o sample.bracken.txt -l S’ script to 
calculate the relative abundance of bacteria at the spe-
cies level. In addition, the flanking regions were further 
blasted against Gypsy Database [68] (https:// gydb. org/ 
index. php/ Blast) to detect potential mobile genetic ele-
ments with E-value lower than 0.01.

Functional profiling of active ruminal microbiome
To analyze the functional profiles of the active rumi-
nal microbiome, metatranscriptomic-assembled con-
tigs were also annotated using Prodigal [69]. The output 
was then uploaded to KofamKOALA, which assigns K 
numbers by HMMER/HMMSEARCH against KOfam (a 
customized HMM database of KEGG Orthologs (KOs)) 
with an e-value lower than 0.01, to annotate the KEGG 
functional pathways [70]. The abundance of active KEGG 
functional pathways was normalized into counts per 
million.

Stability of active rumen microbiome
Attenuation value is a measurement of microbial stabil-
ity, which evaluates the expected rate at which increases 
in the taxonomic perturbation magnitude are expected to 
increase functional profile shifts [71]. For example, our 
previous study showed that the attenuation values of fecal 
microbiota of neonatal calves increased over age, sug-
gesting an increase in stability is a feature of gut microbi-
ota in early life [72]. The attenuation value was calculated 
according to the method described by Eng and Boren-
stein [71]. As this method applies 16S rRNA dataset as 
input, we extracted 16S rRNA sequences from metatran-
scriptomic datasets using SILVA database of kraken2 
[64]. Then the extracted 16S rRNA sequences were 
demultiplexed with “demux” plugin and subjected to 
quality control (QC) using “dada2” plugin [73] of QIIME2 
(version 2020.2) [74] to generate a table containing the 
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taxonomic composition of a sample. Finally, varying fold 
of perturbations of each community’s taxonomic com-
position was simulated and the average shift in the func-
tional profile of a community as a power function of the 
taxonomic perturbation magnitude was established as:

where t indicates the magnitude of simulated taxo-
nomic perturbation, f indicates the expected shift in 
functional capacity, a (attenuation) is defined as inversely 
proportional to the response curve slope, indicating the 
expected rate at which increases in the taxonomic per-
turbation magnitude are expected to increase functional 
profile shifts, b (buffering) indicates how large a pertur-
bation must be before a functional profile shift becomes 
noticeable and approaches the expected shift magni-
tude defined by attenuation [71]. As the buffering val-
ues did not correlate with the diversity or abundance of 
expressed ARGs, they were not reported.

Calculations and statistical analyses
The abundance of ARG classes, total ARGs, and individ-
ual ARG were calculated as ‘number of reads per million 
of post-QC metagenomic/metatranscriptomic reads’ or 
‘number of assemblies per million of post-QC metagen-
omic/metatranscriptomic assemblies. Difference in the 
proportion of post-QC metagenomic/metatranscrip-
tomic reads aligned to bovine genome, the abundance 
of ARGs and ARG transcripts among breeds were ana-
lyzed using the Kruskal–Wallis test in R (version 3.6.1). 
The P-value of multiple comparison of breed effect was 
adjusted into false discovery rate (FDR) using the Ben-
jamini–Hochberg algorithm using ‘dunnTest’ function 
in R. The effect size of multiple comparisons was con-
ducted using ‘Cohen’s d’ function in R. Circos plot analy-
sis was performed in R using the RCircos package [75]. 
Alpha diversity indices, including Chao1 and Simpson’s 
index, was performed using ‘chao1’ and ‘diversity’ func-
tions in R, respectively. Principle Coordinate Analysis 
(PCoA) based on Bray–Curtis distance was performed 
for the ARGs and ARG trasncripts using ‘betadisper’ 
and the results were visualized using ‘plot’ function in 
R. Spearman correlation analysis was performed for the 
abundance of expressed ARGs and RFI, functional pro-
files, and attenuationn value of active microbiome and 
the results were visulized using ‘ggscatter’ and ‘ggplot2’ 
functions in R Studio. The P-value of Spearman correla-
tions were corrected for multiple inference using Holm’s 
method using ‘rcorr.adjust’ function in R. Significant 
difference was declared at P ≤ 0.05 and tendencies at 
0.05 < P ≤ 0.10. The Spearman’s correlation coefficient, 
known as rho (ρ), ranges from − 1.00 (a perfect negative 

f =

1

ea
tb

correlation) to + 1.00 (a perfect positive correlation). A 
rho value higher than 0.40 or lower than − 0.40 as well as 
P value ≤ 0.05 is considered as significant correlation.
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