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Abstract 

Background  The gut microbiome influences its host in a myriad of ways, from immune system development to 
nutrient utilization. However, our understanding of the relationship between the gut microbiome and behavior, 
especially in wild species, is still poor. One behavior that potentially interacts with the gut microbiome is exploratory 
behavior, which animals use to acquire new information from the environment. We hypothesized that diversity of the 
gut microbiome will be correlated with exploratory behavior in a wild-caught bird species. To test this hypothesis, we 
captured wild house sparrows (Passer domesticus) and collected fecal samples to measure the diversity of their gut 
microbiomes. We then introduced individuals to a novel environment and measured their exploratory behavior.

Results  We found that birds with higher alpha diversity of the gut microbiome exhibited higher exploratory behav-
ior. These results suggest that high exploratory birds encounter more types of environmental microbes that contrib-
ute to their diverse gut microbiome compared with less exploratory birds. Alternatively, increased gut microbiome 
diversity may contribute to increased exploratory behavior. We also found differences in beta diversity when com-
paring high and low exploring birds, indicating differences in microbiome community structure. When comparing 
predicted functional pathways of the birds’ microbiomes, we found that the microbiomes of high explorers contained 
more pathways involved in biofilm formation and xenobiotic degradation than those of low explorers.

Conclusions  Overall, we found that the alpha and beta diversity of the gut microbiome is correlated with explora-
tory behavior of house sparrows. The predicted functions of the gut microbiome from high explorers differs from that 
of low explorers. Our study highlights the importance of considering the gut microbiome when investigating animal 
behavior.
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Background
The gut microbiome of an animal in an essential part of 
its biology with effects ranging from nutrient absorp-
tion, immune status, and even cognition [1–3]. Despite 
recent increased attention to wild species, the major-
ity of research on the microbiome has been in model 
organisms such as rodents and Drosophila [4–6]. The 
microbiome is likely an important factor in the fitness 
of wild organisms and therefore research into the struc-
ture and function of the microbiome of wild species is 
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needed [7]. The gut microbiome varies between spe-
cies, and it is also highly variable within individuals 
of the same species and throughout the life of an indi-
vidual [8, 9]. Microbiome diversity can be crucial for 
normal functioning and a more diverse microbiome is 
generally considered more stable and provides health 
benefits to its hosts [10, 11]. Studies in laboratory ani-
mals have found that the diversity of the gut microbi-
ome varies depending on a number of factors including 
host genetics, diet, and the surrounding environment 
[12–15]. Research on the microbiome is a rapidly grow-
ing field, however there is still much we do not under-
stand, especially in wild-caught organisms.

One factor that can potentially influence the gut 
microbiome of wild organisms is exploratory behavior. 
Exploratory behavior is a key trait where animals learn 
new information about their environment [16]. Explora-
tory behavior informs how individuals interact with their 
environment and may be an important factor in deter-
mining which microorganisms are able to colonize a 
host. Individuals within a species typically vary in their 
exploratory behavior [19] and in addition to influencing 
animal fitness through altering predator exposure [17] 
and reproductive success [18] this variation may be an 
important factor in determining which microorganisms 
an individual is exposed to and can colonize their micro-
biome. Due to the importance of the microbiome, this 
may result in exploratory behavior impacting host fitness 
through the microbiome.

Alternatively, the gut microbiome may drive differ-
ences in exploratory behavior. For example, gnotobiotic 
mice exhibit increased exploratory behavior compared 
to mice with normal microbiomes due to altered gene 
expression in the brain [20]. Similarly, axenic Drosoph-
ila have increased locomotor activity attributed to the 
microbiome’s role in regulating the hormone octopamine 
[21]. Probiotic administration also increases exploratory 
behavior in mice by altering hormones and neurotrans-
mitters [22, 23]. The interaction between behavior and 
the microbiome is likely interrelated, and we still have a 

limited understanding of how natural microbiomes relate 
to exploratory behavior.

In this study we evaluated the hypothesis that diversity 
of the gut microbiome will be correlated with exploratory 
behavior in a wild-caught bird species, the house sparrow 
(Passer domesticus). House sparrows have documented 
variation in exploratory behavior that has not yet been 
fully explained [26]. House sparrows are also an invasive 
species that now have a global distribution. Understand-
ing the sparrow’s behavior is an important component 
for understanding this species’ success as an invader [27]. 
We predicted that birds exhibiting higher exploratory 
behavior would have higher alpha diversity, a measure 
of the richness and evenness of the microbiome. We also 
predicted there would be differences in beta diversity, a 
measure of the similarity between microbial communi-
ties, and functional pathways among individuals with dif-
ferent levels of exploratory behavior.

Results
We measured the exploratory behavior of wild-caught 
house sparrows (n = 45) in a novel environment and 
quantified their gut microbiome with fecal samples col-
lected at capture by sequencing the 16S rRNA gene. We 
also collected a second fecal sample from a subset of 
the bird (n = 31) after the novel environment test. For 
all samples collected, the sequencing output resulted in 
2,656,466 raw reads. After quality control (which resulted 
in us omitting the samples of 5 pre-captivity samples and 
1 post-captivity sample due to low read counts), we pro-
cessed the 70 total fecal samples (40 pre-captivity and 30 
post-captivity) with an average number of sequence reads 
23,114 ± 13,337 (mean ± standard deviation) clustered 
into a total of 10,470 operation taxonomic units (OTUs).

We found that alpha diversity (measured with Shan-
non diversity index) of the microbiome community is 
positively correlated with exploratory behavior (Table 1; 
Fig.  1). Birds that had higher alpha diversity of their 
gut microbiome also had higher exploratory behavior. 
This result is robust to measuring alpha diversity using 

Table 1  Results of linear mixed-effect model investigating the influence of exploratory behavior, sex, scaled mass, activity level and 
latency to explore on Shannon’s index of the gut microbiome of the birds collected before and after captivity

* indicates significance at 0.05 level

Variable Degrees of freedom Pre-captivity: F value (P-value) Post-captivity: 
F value 
(P-value)

Exploratory Behavior 1 8.87 (0.009*) 9.00 (0.006*)

Sex 1 0.67 (0.421) 4.15 (0.053)

Scaled Mass 1 3.43 (0.074) 0.76 (0.391)

Activity Level 1 0.93 (0.342) 3.66 (0.068)

Latency to Approach First Object 1 0.28 (0.599) 0.66 (0.422)
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different methods and the same result is seen with Chao1 
diversity index and observed OTUs (Additional file  1: 
Table S1).

We also found significant differences in beta diver-
sity between high and low explorers using Bray–Curtis 
distances and near significant differences in weighted 

Unifrac distances in pre-captivity samples but not post-
captivity samples (PERMANOVA, Fig. 2; Table 2). Prin-
cipal components one and two explained 16.4% and 
6.4%, 24% and 8.9%, 24.2% and 7.9%, and 21.4% and 
11.7% of the variance in gut microbiome communi-
ties based on pre- and post-captivity Bray–Curtis and 

Fig. 1  Relationship between exploratory behavior (number of objects visited) and Shannon diversity index of the gut microbiome of samples 
collected before (A) and after (B) captivity

Fig. 2  Principal coordinate analysis of pre-captivity (A) Bray–Curtis (B) weighted UniFrac distances and post-captivity (C) Bray–Curtis (D) weighted 
UniFrac distances between the gut microbiomes of high (red) and low (blue) explorer birds. Each point represents a different individual. Circles 
indicate 95% confidence intervals
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pre- and post-captivity weighted UniFrac distances, 
respectively.

There was significant heterogeneity in the dispersion 
of both Bray–Curtis (F1,43 = 9.4, p = 0.003) and weighted 
UniFrac (F1,43 = 4.1, p = 0.048) distances. However, PER-
MANOVA is robust to heterogeneity when the com-
pared groups have similar samples sizes, therefore this 
was unlikely to bias results [40]. The only taxa differen-
tially abundant between the high and low explorers was 
Catellicoccus (OTU 1), and it was more abundant in low 
explorers (LDA = 5.40, p = 0.0267).

The microbiome functional analysis predictions 
resulted in 368 predicted pathways defined by the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
database. Tax4Fun2 only utilizes sequences that have 
matches to the reference databases to predict functions 
and on average 85.9 ± 22.1% (mean ± standard devia-
tion) of sequences per sample were utilized. Thirty-two 
pathways were significantly enriched in the high explor-
ers and 14 pathways were significantly enriched in the 
low explorers. The majority of pathways with significantly 
different abundance between the high and low explora-
tory groups were related to metabolism (78% of pathways 
abundant in high explorers versus 64% pathways abun-
dant in low explorers) with the rest being genetic infor-
mation processing (0% of pathways abundant in high 
explorers versus 28.5% pathways abundant in low explor-
ers), cellular processes (6.15% of pathways abundant in 
high explorers versus 7.14% pathways abundant in low 
explorers), human diseases (9.3% of pathways abundant 
in high explorers versus 0% pathways abundant in low 
explorers), environmental information processing (3.12% 
of pathways abundant in high explorers versus 0% path-
ways abundant in low explorers) and organismal systems 
(3.12% of pathways abundant in high explorers versus 0% 
pathways abundant in low explorers) (Fig. 3).

Discussion
Our results indicate that exploratory behavior in wild-
caught house sparrows is positively correlated with the 
alpha diversity of their gut microbiome. High explor-
ers had higher diversity relative to low explorers. Beta 
diversity also differed between high and low explorers, 
indicating that high explorers had different microbiome 
compositions than low explorers, however, this was only 
the case in pre-captivity samples. Finally, the functional 
pathways present in the microbiomes of high and low 
explorers differed. These findings provide the first evi-
dence that the microbiome community is related to host 
exploratory behavior in a wild-caught species.

Birds that were high explorers in our novel environ-
ment had high alpha diversity in their gut microbiomes 
both before and after time spent in captivity. It is likely 
that birds that were high explorers in our novel environ-
ment were also high explorers in the wild, as exploratory 
traits measured in the lab in other passerine species have 
been found to reflect behavior in the wild [41]. Because 
the gut is colonized with microorganisms present in the 
host’s environment [42–45], the high explorers likely 
encountered more diverse microorganisms within these 
varied habitats compared with low explorers. Host 
organisms encounter microorganisms from the environ-
ment through interacting with substrates, like soil and 
leaf litter, as well as by ingesting microorganisms on food 
[42, 46, 47]. For example, correlations between diet and 
specific bacteria taxa were found in an insectivorous pas-
serine, attributed to exposure to different bacteria from 
different diets [48]. Furthermore, these high exploring 
birds potentially encountered more diverse microor-
ganisms through social interactions. In another passer-
ine, high explorers interact more with other individuals, 
potentially exposing them to diverse microorganisms 
through social contact [49, 50].

Table 2  Results of PERMANOVA investigating the influence of exploratory group, sex, scaled mass, activity level, latency to explore, 
capture location, and capture date on differences in the birds’ pre-captivity and post-captivity gut microbiome communities using 
Bray–Curtis dissimilarity or Weighted UniFrac distance

* indicates significance at 0.05 level

Variable Degrees of 
freedom

Pre-captivity 
Bray–Curtis:
F value (P-value)

Post-captivity Bray–
Curtis: F value (P-value)

Pre-captivity Weighted 
UniFrac: F value (P-value)

Post-captivity Weighted 
UniFrac: F value 
(P-value)

Exploratory group 1 1.62 (0.026*) 1.29 (0.154) 1.65 (0.054) 0.77 (0.762)

Sex 1 1.47 (0.058) 1.40 (0.112) 2.18 (0.023*) 1.56 (0.071)

Scaled mass 3 1.83 (0.014*) 1.34 (0.161) 2.82 (0.005*) 1.62 (0.069)

Activity levels 3 1.10 (0.278) 0.98 (0.441) 0.85 (0.608) 0.66 (0.885)

Latency to approach 
first object

3 0.81 (0.806) 0.84 (0.644) 0.95 (0.451) 0.73 (0.773)

Capture location 4 1.27 (0.038*) 1.31 (0.113) 1.45 (0.058) 1.02 (0.442)

Capture date 24 1.19 (0.030*) 1.29 (0.079) 0.98 (0.539) 1.01 (0.471)
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Other studies have also found evidence that habitat 
use influences microbiome diversity. Migratory birds 
that reside in different habitats throughout the year have 
a distinct microbiome composition from non-migrant 
individuals of the same species [51]. Rural gulls (Larsus 
argentatus) with higher habitat heterogeneity and lower 
site fidelity had higher microbiome diversity compared to 
more urban birds [52]. Global change and urbanization 
are currently presenting challenges to many species and 
have required rapid adaptation. These habitat changes 
also present challenges in terms of maintaining a diverse 
and stable microbiome, which may have detrimental 
effects on host health [53].

It is possible that the microbiome is influencing explor-
atory behavior rather than vice versa. Behavioral traits 
can be impacted by microbiome composition through 
mechanisms such as altered gene expression, hormones, 
and neurotransmitters [20, 23, 54, 55]. For example, 
gnotobiotic mice had higher exploratory behavior as 
well as altered gene expression in the brain [20]. Recent 
research in birds has also found that microbiome diver-
sity and composition was correlated with behavior and 
performance in cognitive tasks [56, 57]. It is also possible 
that another variable is driving the correlation between 
exploratory behavior and microbiome composition. For 

example, an individual’s genotype contributes both to 
behavior [58, 59] and microbiome composition [60, 61] 
and recent work in mice have found complex interactions 
between genotype and microbiome resulting in changes 
in behavior [62]. Exploratory behavior and microbi-
ome diversity are possibly interrelated and contribute to 
each other. Experimental studies are therefore needed to 
determine the causality of this relationship.

We also found significant differences in the beta diver-
sity between high and low exploring birds. Therefore, 
high explorers not only have more diverse microbiome 
communities but have different composition compared 
to low explorers. In addition, beta diversity significantly 
differed based on scaled body mass, possibly because 
individuals with different body masses consume differ-
ent diets or have different genotypes. There are likely 
other factors that are important in determining differ-
ences in the microbiome composition, as the pre-cap-
tivity samples had clustering in the PCoA analysis that 
is unexplained by any of our measured variables. Inter-
estingly, beta diversity did not significantly differ in 
exploratory behavior or scaled mass in the post-captivity 
samples, possibly because the standard captive environ-
ment reduced the differences in the microbiome between 
high and low exploring birds and birds of different 

Fig. 3  Linear Discriminant Analysis Effect Size results identifying functional pathways differentially abundant in the gut microbiomes of high and 
low explorers
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masses. Despite differences in beta diversity in pre-cap-
tivity samples, the only taxon that was found to be signifi-
cantly different between the two groups is a Catellicoccus 
bacteria, a common genus in the guts of several bird 
species [63–66]. The structure of the Catellicoccus mari-
mammalium genome, the first described species in this 
genus, indicates that it is a gut symbiont, however its role 
in the gut microbiome is still not well described [67].

To further understand the differences between the 
microbiome communities, we investigated differences in 
their functional pathways. We predicted that high and 
low explorers would differ in the functional capabilities 
of their microbial communities. In the high explorers, 
their gut microbiomes had higher numbers of functions 
related to the formation of biofilms by opportunistic 
pathogens and the metabolism of xenobiotics. Biofilm 
formation can be harmful to the host when initiated by 
opportunistic pathogens such as Pseudomous aeruginosa 
[68]. Birds with higher exploratory behavior (and higher 
numbers of functions related to the formation of bio-
films) therefore may have immune systems that are able 
to suppress the formation of these biofilms within their 
guts [69]. Exploration and resistance to pathogens are 
both important traits in a successful invasive species such 
as the house sparrow [70, 71]. However, it is not known 
if the gut microbiome mediates the relationship between 
immunity and behavior in this species. Xenobiotics are 
environmental toxins and high explorer birds may have 
microbiomes that are better at degrading and eliminating 
ingested xenobiotics than low explorers. Similarly, urban 
house sparrows have microbiomes with higher levels of 
xenobiotic degrading genes compared with rural house 
sparrows [72]. Therefore, the more exploratory birds may 
be better adapted to these birds’ urban environment. In 
addition to these functions, we also found several other 
differences between these groups in metabolism, cellular 
processes (such as DNA replication and transcription), 
and pathways for responding to environmental condi-
tions. All these functions are predictions and therefore 
direct measurement of the microbiome’s functional capa-
bilities and experimental exploration on their impacts is 
needed to understand how it relates to the birds’ explora-
tory behavior.

Conclusion
Our results show that exploratory behavior positively 
correlates with alpha diversity in the gut microbiome 
in a wild-caught bird species. We also found that beta 
diversity and some functional pathways are significantly 
different between levels of exploratory behavior. These 
results suggest that differences in behavior may be driv-
ing differences in microbiome diversity and composi-
tion by influencing the variety of microbe taxa able to 

colonize the host. It is also possible that differences in 
the microbiome are driving differences in exploratory 
behavior. The results of this study are correlational 
but provide a basis for further explorations on this 
topic. Interesting next steps could include experimen-
tal manipulations of the microbiome (via diet manip-
ulations or antibiotics) to determine the impact on 
avian behavior as well as investigating the relationship 
between the microbiome and other behaviors (such as 
sociality).

Methods
Animals and housing
From March through July 2020, we captured 45 adult 
house sparrows from 5 capture sites (at least 0.5  km 
apart, 3.2 ± 1.9  km (mean ± standard deviation)) in 
College Station and Bryan, Texas. These locations con-
sisted of residential areas (30o67’N, 96o32’W; 30o59’N, 
96o32’W; 30o59’N, 96o32’W), a suburban park (30o62’N, 
96o35’W), and a poultry research center (30o58’N, 
96o35’W). Birds were caught in either potter traps or 
mist nets. Immediately after capture, birds were placed 
in a paper bag with a sterilized weightboat at the bot-
tom to collect a fecal sample (methodology outlined 
in [24]. Fecal samples were collected as a proxy for 
the microbial community present in the gut [28, 29]. 
Once the birds had defecated (within 5 min), the feces 
were placed in an Eppendorf tube with a sterile spat-
ula. Samples were placed on ice until they were able 
to be stored in a − 80  °C freezer (mean time to freezer 
107 ± 63 min). Birds were then transported to the hous-
ing facility and individuals were marked with a num-
bered metal leg band. The weight and tarsus length 
of the birds were recorded and were used to calculate 
scaled mass index [25]. Birds were then housed in cages 
(0.6  m × 0.33  m × 0.3  m) at Texas A&M University, 
College Station Texas, USA (30o36’N, 96o21’W) in an 
indoor room (5  m × 6.3  m). Birds were housed alone 
in their cage in order to minimize microbe transfer 
between individuals, although they were in visual and 
auditory contact with other birds in the room. They 
were kept on a 13 h:11 h light:dark cycle at 24.0 ± 0.5 °C 
(mean ± standard deviation) provided with food (Royal 
Wing Wild Bird Food, Tractor Supply Co.) and water 
ad  libitum. Birds were tested individually on the novel 
environment test (see below) within three days of 
capture (range: 1–3  days; mean ± standard deviation: 
1.46 ± 0.64  days). We collected a second fecal sample 
from most of the birds (n = 31; using the same methods 
as above) after they completed the novel environment 
test (5–10  days post capture, average: 6.80 ± 1.72  days 
(mean ± standard deviation)).
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Novel environment test
The novel environment test was based on a previous 
design testing exploratory behavior in house sparrows 
[26]. We modified the design slightly (reduced the size of 
the novel environment and changed a few of the objects) 
to make it suitable for our laboratory space. The novel 
environment was an indoor flight cage (2 m × 2 m × 2 m) 
with sides and ceiling made of wire mesh. Inside the 
novel environment were nine objects that the bird could 
visit: two artificial trees, a nest shaped bag on the wall, a 
nest box, a food bowl, a perch, a bag hanging from the 
ceiling, a shelf, and a toy ball on the ground (Additional 
file 1: Figure S1). The experimenter placed each bird indi-
vidually in the novel environment and its behavior was 
recorded for 30  min using two video cameras (VIXIA 
HF R70; Canon Inc.). The experimenter moved to an 
adjacent room during the trial and was not visible to the 
bird. After 30 min, the bird was removed from the flight 
cage and returned to its housing cage. Each bird was only 
tested once.

The videos from each trial were scored to record 
exploratory behavior and activity level. Exploratory 
behavior was measured by recording the number of dif-
ferent objects the bird physically contacted during the 
trial. Only the first instance of contact to an object was 
recorded if the bird visited an object multiple times, 
which occurred in most trials. Activity level was recorded 
by measuring the amount of time the bird spent mov-
ing between locations. The start of each movement was 
defined when the bird moved more than one body length 
from its current location and ended when the bird first 
contacted its next location and remained there for at 
least one second. We also recorded the latency to explore, 
which was the amount of time between the placement of 
the bird in environment and when it first contacted the 
first object in the flight cage. Videos were scored by two 
coders. To ensure reliability between video coders, the 
coders practiced on one trial, and they scored behaviors 
similarly (within three seconds of each other in all cases).

Microbiome methods
We isolated DNA from 0.25 g of each fecal sample using 
QIAamp PowerFecal DNA Isolation Kits (Qiagen, Ger-
many) following the manufacturer’s protocol (except we 
increased sample incubation at 65  °C from 10 min to at 
least 8 h in an effort to increase DNA yield). We used a 
Qubit fluorometer (dsDNA HS Assay Kit, Invitrogen, 
Carlsbad, United States) to verify sufficient DNA yield 
and dilute the sample to a concentration of 5  ng/ul of 
DNA. The extracted DNA was then sent to the Michigan 
State University’s genomics core and was processed and 
sequenced according to Kozich et al. [30]. In brief, librar-
ies were constructed by amplifying the V4 region of the 

16S rRNA gene using primers 515F and 806R with Illu-
mina adapters and dual indices. Samples were amplified 
using DreamTaq Master Mix (ThermoFisher). The PCR 
reaction was incubated at 95 °C for 3 min, followed by 30 
cycles of 45 s at 95 °C, 60 s at 50 °C, and 90 s at 72 °C, then 
a final extension at 72 °C for 10 min. PCR products were 
then pooled and were batch normalized using Invitrogen 
SequalPrep DNA Normalization plates. Products recov-
ered from the plates were concentrated using an Amicon 
Ultra centrifugal filter and cleaned using AMPure XP 
magnetic SPRI beads. The cleaned pools were sequenced 
on the Illumina MiSeq platform using v2 2 × 250 base 
pair kit (Illumina, Inc).

Initial quality control of raw sequences was performed 
with Trim Galore (version 0.6.6) which was used to 
remove adaptors and trim reads with base quality below a 
Phred score of 20 resulting in 2,300,451 reads. Trimmed 
sequences were then processed using the Mothur soft-
ware (version 1.45.3; [31] using standard operating pro-
cedure (accessed May 2021). Briefly, the sequences were 
assembled into contigs and further quality trimmed. 
Identical sequences were merged, and singletons were 
removed. Remaining sequences were aligned against 
the SILVA database (Release 132). Chimeric sequences 
were removed using the UCHIME function. Remaining 
sequences were clustered into Operational Taxonomic 
Units (OTUs) with 97% similarity. Samples with fewer 
than 1000 reads were dropped from subsequent analysis 
as the low sequence read count may skew downstream 
analysis [32].

Statistical analysis
Files were imported into RStudio (version 4.1.2) using the 
phyloseq R package (version 1.36.0 [33]). Variance stabili-
zation transformation was applied to the OTU counts to 
account for the differences in library size across samples 
using the Deseq2 R package (version 1.32.0; [34]. Analy-
ses were also performed using raw data and data rarified 
to 1810 sequences, which is size of the sample with the 
lowest read count after filtering, however, the analyses of 
these data yielded similar results, so we present them in 
the supplement only (Additional file 1: Tables S2–S5).

To quantify alpha diversity, we calculated Shannon’s 
index, Chao1, and observed OTUs (using phyloseq R 
package), which were then used as the dependent vari-
able in linear mixed effect models. Chao1 and observed 
OTUs were log-transformed to better fit model assump-
tions. The independent variables of each model were the 
number of different objects the bird visited, scaled body 
mass, sex, latency to approach first object, and activity 
level. Capture location and date were used as the random 
effects in the model (lme4 R package version 1.1–27.1; 
[35]).
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To quantify beta diversity, which quantifies differ-
ences in microbial community composition, we divided 
birds into ‘high explorer’ (visited 2–5 objects; n = 25), 
and ‘low explorer’ (visited 0–1 objects; n = 20) groups. 
We then calculated dissimilarity matrices using both 
Bray–Curtis and weighted-UniFrac distances. We then 
used the adonis2 function to run PERMANOVA in the 
vegan R package (version 2.5–7; [36] set at 999 permu-
tations, which compares the centroids of microbial com-
munities of different groups with either Bray–Curtis or 
weighted UniFrac distances as the dependent variable. 
The independent variables included were exploratory 
behavior (high explorer or low explorer), sex, scaled body 
mass, activity levels, latency to visit first object, capture 
location and trial date. Date and capture location were 
included as fixed effects because PERMANOVA cannot 
accommodate mixed effect models. PERMANOVA also 
cannot accommodate continuous variables, so scaled 
body mass, activity levels, and latency to visit first object 
were converted into discrete variables by using quartiles 
to split data into four groups. We also compared the dis-
persion of the two groups with a PERMDIST test using 
the betadisper function in vegan [37]. We used principal 
coordinate analysis (PCoA) plots to visualize the dissimi-
larity distances between the groups. Finally, to determine 
any taxa that were significantly different between high 
and low explorers we used the Linear discriminate anal-
ysis (LDA) effect size (LEfSe) function in Mothur. The 
results from the analysis were adjusted for multiple com-
parisons with the Benjamini–Hochberg correction [38].

To generate predictions about the functions of the 
microbiome communities we used the Tax4Fun2 R pack-
age (version 1.1.5) which calculates a functional profile 
by associating OTUs with KEGG orthologue functional 
genes (KO) and their metabolic pathways. Although Tax-
4Fun2 does not measure functional capacity directly, it 
is considered more accurate at determining microbial 
functions than other programs [39]. We used the LEfSe 
function on the Galaxy server (http://​hutte​nhower.​org/​
galaxy) to determine which functional pathways are dif-
ferentially abundant between the high and low explorers. 
The results from the analysis were adjusted for multiple 
comparisons with the Benjamini–Hochberg correction 
[38].
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