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Abstract 

Background Anthropogenic disturbance has the potential to negatively affect wildlife health by altering food avail‑
ability and diet composition, increasing the exposure to agrochemicals, and intensifying the contact with humans, 
domestic animals, and their pathogens. However, the impact of these factors on the fecal microbiome composition 
of wildlife hosts and its link to host health modulation remains barely explored. Here we investigated the composition 
of the fecal bacterial microbiome of the insectivorous bat Kuhl’s pipistrelle (Pipistrellus kuhlii) dwelling in four environ‑
mental contexts with different levels of anthropogenic pressure. We analyzed their microbiome composition, struc‑
ture and diversity through full‑length 16S rRNA metabarcoding using the nanopore long‑read sequencer MinION™. 
We hypothesized that the bacterial community structure of fecal samples would vary across the different scenarios, 
showing a decreased diversity and richness in samples from disturbed ecosystems.

Results The fecal microbiomes of 31 bats from 4 scenarios were sequenced. A total of 4,829,302 reads were obtained 
with a taxonomic assignment percentage of 99.9% at genus level. Most abundant genera across all scenarios were 
Enterococcus, Escherichia/Shigella, Bacillus and Enterobacter. Alpha diversity varied significantly between the four 
scenarios (p < 0.05), showing the lowest Shannon index in bats from urban and intensive agriculture landscapes, 
while the highest alpha diversity value was found in near pristine landscapes. Beta diversity obtained by Bray–Curtis 
distance showed weak statistical differentiation of bacterial taxonomic profiles among scenarios. Furthermore, core 
community analysis showed that 1,293 genera were shared among localities. Differential abundance analyses showed 
that the highest differentially abundant taxa were found in near pristine landscapes, with the exception of the family 
Alcaligenaceae, which was also overrepresented in urban and intensive agriculture landscapes.

Conclusions This study suggests that near pristine and undisturbed landscapes could promote a more resilient gut 
microbiome in wild populations of P. kuhlii. These results highlight the potential of the fecal microbiome as a non‑
invasive bioindicator to assess insectivorous bats’ health and as a key element of landscape conservation strategies.
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Background
The majority of Earth’s ecosystems are dominated by 
human activity and suffer significant and continuously 
growing disturbances. Consequently, we are witness-
ing a global biodiversity crisis in which current species 
extinction rates far exceed background estimates [1, 2]. 
In turn, biodiversity sustains many ecosystem services 
needed by humans, and its loss is entailing clear eco-
logical, public health and economic costs at a global 
scale [3].

The Order Chiroptera contributes to worldwide bio-
diversity with more than 1400 different species, making 
up one-fourth of terrestrial mammals [4]. This diverse 
group of mammals inhabits all continents except Antarc-
tica and is responsible to promote and support ecosystem 
health by means of pollination, seed dispersal and insect 
and vector-borne diseases regulations [5]. Nonetheless, it 
is among the most endangered group of mammals with 
more than 200 bat species around the world considered 
threatened by the International Union for the Conserva-
tion of Nature [4].

Most of the current research efforts relevant to bat 
conservation worldwide are linked to trends in species 
diversity and abundance, and distribution patterns [6–8]. 
Furthermore, investigation into the threats affecting bat 
species has focused mainly on climate change, habitat 
degradation and other related human disturbances such 
as over-hunting, pollution, or collisions with wind energy 
turbines [9]. Except for the white nose syndrome, which 
has given rise to extensive research, very little investi-
gation has been done on bat health in contrast to other 
endangered species [4, 6]. In Europe, bat populations 
have declined considerably over the last decades presum-
ably due to multiple factors of anthropogenic origin (e.g., 
pesticides use in agriculture, wind turbines or habitat loss 
and fragmentation) [9]. Understanding the factors that 
contribute to such declines and the differential responses 
of bat species to habitat disturbance is critical for world-
wide bat conservation.

Health can be broadly defined as a state of physical 
and psychological well-being and the subsequent abil-
ity to adapt and cope with changing environment [10]. 
Measuring the health of a group of individuals or pop-
ulations, particularly in free-ranging species, can be 
challenging. Health indices, such as body condition or 
hematological values, are quantifiable parameters used to 
refer to the health state of a group of animals or species 
[10]. A specific framework to assess this particular issue 
in populations of insectivorous bats around the globe 
has not yet been developed. Difficulties inherent to this 
broad taxonomic group are not only the requirement of 
species-specific knowledge of ecology, anatomy, disease 
susceptibility and pathology, but also arduous sampling 

conditions often entailing inaccessible sites or technical 
training [9, 11, 12].

The bacterial communities that inhabit the gut of all 
animal species constitute the intestinal bacterial micro-
biota. The genetic and structural elements (e.g., lipids, 
proteins) and metabolites (e.g., signaling molecules, inor-
ganic and organic molecules, toxins) produced by these 
organisms in a specific environment, and their theater 
of activity, are referred to as the bacterial microbiome 
[13]. Most of the knowledge about the normal gastro-
intestinal microbial community of bats comes from tra-
ditional microbiological studies [14, 15] and they are 
particularly focused on the presence of infectious agents 
with zoonotic potential [16, 17]. Current studies on the 
metagenomic profiling for fecal bacterial communities of 
bat species have contributed to broadening the knowl-
edge of species-specific microbial diversity, zoonotic 
pathogens [18–25], diet and niche adaptation, and evolu-
tion [26–28].

Two decades of microbiome studies in a wide range of 
species suggest that intestinal microbiota may contrib-
ute not only to the gut’s health but to the overall host’s 
immunity [29, 30]. Among other characteristics, species-
rich communities in a given microbial system appear to 
be more resilient and to prevent establishment of exog-
enous microbes -including pathogens- than species-poor 
communities [31]. This bacterial richness further pro-
motes a better functioning of the community by resource 
specializing and, in turn, using limited resources more 
efficiently [32]. As it happens in macroecosystems [33], 
the inherent properties of resource specializing and resil-
ience from bacterial species-rich communities may be 
reflected in the overall health status of the host. Given 
that the microbiome is composed of a dynamic commu-
nity of bacteria, it is constantly susceptible to change due 
to age, diet, environment, and diseases among other fac-
tors [34]. Hence, substantial changes in species propor-
tions or richness within the gastrointestinal microbial 
community of a host may lead to dysbiosis, which has 
been associated to digestive, neurologic, metabolic, and 
respiratory affections in mammals [35].

Land-use changes for agricultural use and urbaniza-
tion can negatively affect wildlife health, especially by 
altering food availability and diet composition, increas-
ing the exposure to agrochemicals, and increasing the 
contact with humans, domestic animals, and their 
pathogens. These factors may disrupt the normal gut 
microbiota and, in consequence, increase the incidence 
of pathogens which may contribute to the emergence of 
diseases [36, 37]. Particularly, agriculture development 
has been shown to create selective pressure on inver-
tebrates [38] and soil microbes [39] through intensifi-
cation practices and pesticide use. Their impact on the 
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nutrient cycling of soil and its microbes further affects 
the food webs of ecosystems [40, 41], which eventu-
ally may alter the intestinal microbiome of animals. 
However, evidence for an association between habitat 
degradation and gut microbiota changes in bat spe-
cies has barely been explored [42, 43]. Furthermore, 
information on bat microbial communities -especially 
these detected in feces- and their role in bat’s health 
remain scarce. Understanding the complex relation-
ship between host habitat and fecal bacterial composi-
tion could contribute to developing a new operational 
framework for the assessment of bats’ health which can 
be applied to guide future conservation decisions.

Here, we contribute to the information gathered world-
wide about the fecal microbiome of insectivorous bats 
by exploring the hypothesis that land-use changes and 
anthropogenic disturbances could shape differences in 
the composition of the fecal bacterial microbiome of 
P. kuhlii. Because bats dwelling in intensive agriculture 
and urban landscapes may have access to a less diverse 
diet and be more exposed to pesticides and pollutants, 
we hypothesized that bats residing in near pristine eco-
systems would show an increased alpha diversity of fecal 
samples in comparison with bats dwelling in human-dis-
turbed ecosystems. We also expected to find significant 
differences in the structure of the fecal bacterial commu-
nity between the different scenarios.

Methods
Study areas
Our study areas were located in Catalonia, in the north-
east of the Iberian Peninsula. We selected four environ-
mental contexts with different levels of anthropogenic 
environmental degradation and separated by a mini-
mum of 10 km from each other (Additional file 1: Figure 
S1 and Table  S1): mature and old-growth forest (D0), 
extensive farming and agriculture (D1), immature and 
secondary forest (D2), and urban and intensive agricul-
ture landscape (D3). Mature forests from this study were 
composed of large trees with abundant suitable roosts 
for bats and were assumed to be free of human distur-
bance. The selected youth forest had been under log-
ging pressure and habitat fragmentation for decades and 
was represented by a less complex vegetation structure 
than mature forests and scarce suitable roosts for bats. 
In scenario D1, the main use of the soil was pastureland 
for bovine grazing and crop fields with traditional pest 
management and moderate pesticide use. The urban and 
intensive agriculture landscape selected (D3) was located 
in the Segrià County, which comprises one of the largest 
intensive pig industry and intensive agriculture area of 
Spain, and Europe [44, 45].

Animals and samples
We selected the Kuhl’s pipistrelle (Pipistrellus kuhlii), a 
sedentary and synanthropic bat species in NE-Spain, as 
a study model. This species indistinctively inhabits open 
forests and anthropogenic landscapes from the Mediter-
ranean basin and extends throughout Europe. From what 
is known so far, the home range of this species is less 
than 2  km2, and foraging sites can beas far as 4.5 km [46]. 
Its ability to dwell in pristine and altered ecosystems 
makes this species an interesting model for assessing the 
impact of anthropogenic disturbance on fecal bacterial 
composition.

Thirty-one Kuhl’s pipistrelles were captured across the 
four studied landscapes from mid-July to early Septem-
ber 2021 (Additional file 1: Table S2). Bats were captured 
using harp traps and mist nets and placed in individual 
and clean cloth holding bags until sampling. Fecal sam-
ples were collected directly from bats or from cloth hold-
ing bags using sterile forceps. Samples were individually 
placed in sterile Phosphate Buffered Saline (PBS) (Lonza, 
Basel, Switzerland) and immediately deposited in dry 
ice. Once in the laboratory facilities, they were stored at 
-80ºC until DNA extraction.

Bats included in this study were individually marked 
with a circular wing biopsy (3  mm punch) which was 
used for other research purposes but also allowed us to 
avoid resampling. All sampling procedures followed the 
EUROBATS best practices [47] and at least one wild-
life veterinarian was present in all the captures in order 
to guarantee the welfare of the captured individuals. No 
bats resulted harmed or died during the performance of 
the study.

DNA extraction, generation of 16S rRNA gene amplicon 
sequences and library preparation for next‑generation 
sequencing
Fecal DNA was extracted using QIAamp PowerFe-
cal Pro DNA Kit (Qiagen, Hilden, Germany) following 
manufacturer’s instructions. Initial DNA of the samples 
was quantified by Qubit Fluorometric Quantification 
High Sensitivity Assay (Invitrogen, California, USA). 
16S rRNA was selectively amplified from genomic DNA 
by the polymerase chain reaction (PCR) according the 
SQK-RAB201 Nanopore Kit using universal bacterial 
primers 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) 
and 1492R (5′-GGT TAC CTT GTT ACG ACT T-3′), ena-
bling the amplification of approximately 1500 bp of the 
16S rRNA gene. PCR amplification was performed in 
50 µl of PCR mix comprising 25 µl mix reaction buffer 
2 × (LongAmp Taq 2X master mix, New England Bio-
labs); 14  µl of ultra-pure water; 1  µl of each primer 
10 µM; and 10 µl of DNA. The temperature and cycling 
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conditions were as follows: first, preheating at 95 °C for 
1 min; then 25 cycles at 95 °C for 20 secs; 55 °C for 30 
secs; 75  °C for 2  min; and a final incubation at 65  °C 
for 5  min. Library construction was performed using 
the Rapid 16S Amplicon Barcoding Kit (SQK-RAB201) 
from Oxford Nanopore Technologies (ONT, Oxford, 
United Kingdom). Two sequencing runs of 20 and 11 
multiplexed samples were carried out on a MinION 
sequencer (ONT) using a brand new R9.6 flow cell.

Data analysis
All 16S rRNA sequences were obtained by the Min-
KNOW suite [48] and basecalled with Guppy 3.0. 
(ONT). Reads were filtered by length (> 1500  bp) and 
quality (> 10) using NanoFilt 1.1.0 [49]; adapters and 
barcodes were trimmed with qcat-1.1.0 (ONT). Taxo-
nomic assignment at genus level was carried out with 
Centrifuge 10.3-beta [50], using Silva 132 database [51] 
based on a 95% of identity threshold. Afterwards, taxa 
with single read counts were removed. In addition, low 
count filter was set to a minimum read count of 4 with 
a 20% prevalence in the samples. Finally, filtered data 
was normalized using total sum scaling (TSS). Plots 
and analysis of microbiomes structure and diversity 
were made with Pavian-0.3 [52] and MicrobiomeAna-
lyst [53].

Statistical analysis
Alpha diversity of each sample was estimated by the 
Shannon index. Differences between alpha diversity indi-
ces were assessed using the Kruskal–Wallis test [54] with 
a significance threshold set at p < 0.05. Additionally, beta-
diversity was determined using Bray–Curtis distances 
and localities were compared using the nonparametric 
analysis of similarities (ANOSIM) test [55]. Regarding 
the study of differential taxa among scenarios, a Linear 
Discriminant Analysis Effect Size (LEfSe) [55] algorithm 
with a LDA effect size threshold of 2 (on a  log10 scale) 
was applied at phylum, family, and genus levels. Moreo-
ver, core (taxa shared by 100% of samples), accessory 
(taxa shared by samples from 2 or 3 scenarios) and exclu-
sive microbiomes (taxa found exclusively in one scenario) 
were identified using the R package vegan [56]; and the 
Venn diagram was obtained using the VennDiagram 
package [57]. Abundance threshold for the core micro-
biome analysis was set to 0.01. Random effects of sex 
and locality on alpha and beta diversity were tested with 
Kruskal–Wallis and a Permutational Mantel test (9999 
permutations) based on Spearman’s rank correlation rho, 
respectively. All statistical analyses were performed using 
R version 4.1.3 [58].

Results
The entire 16S gene (≈ 1.5  kb) from the fecal micro-
biomes of 31 bats was sequenced, for which a total of 
4,829,302 reads (7.2  Gb) were obtained with an average 
of 114,988 ± 43,577 reads per sample. The percentage of 
taxonomic assignment at the genus level was 99.9% of the 
total sequences obtained and rarefaction curves of rich-
ness against sequence sample size reached asymptotic 
growth (Additional file 1: Figure S2).

Taxonomic composition
Firmicutes and Proteobacteria were the most abun-
dant phyla in all scenarios (Fig.  1). Firmicutes showed 
a relative abundance of 58.6% ± 31.1 in scenario D0, 
70.63% ± 33.7 in scenario D1, 45.3% ± 28.8 in scenario 
D2 and 58.1% ± 22 in scenario D3. On the other hand, 
Proteobacteria showed an abundance of 39.88% ± 31.9 in 
scenario D0, 28.32% ± 33.8 in scenario D1, 54.3% ± 29 in 
scenario D2 and 41.4% ± 22 in scenario D3. Actinobac-
teria was the third most abundant phyla in all the sam-
ples. Nevertheless, its relative abundance was < 1% for all 
scenarios, ranging from 0.09% in scenario D2 to 0.40% in 
scenario D0.

Although there was not a strict pattern of relative 
abundance across all scenarios, Enterococcus, Escheri-
chia/Shigella, Bacillus and Enterobacter were consistently 
found as the most abundant genera, showing relative 
abundances (among scenarios) of 15.4% ± 15.1 for Ente-
rococcus, 10.5% ± 10 for Escherichia/Shigella, 6.7% ± 7 
for Bacillus and 5.5% ± 6 for Enterobacter (Fig.  2). 
Enterobacter displayed both high and low dominance 
across samples with a range of 0.02% to 20%. The most 
abundant genera in particular scenarios included Ser-
ratia (4.56% ± 0.61), Lachnoclostridium (4.13% ± 0.25), 
Candidatus Soleaferrea (4.12% ± 0.29), Pseudomonas 
(3.7% ± 0.59), and Carnobacterium (3.38% ± 0.56) in 
D0; Staphylococcus (11.7% ± 3), and Vespertiliibac-
ter (2.59% ± 3) in D1; Serratia (4.23% ± 0.32), Lons-
dalea (3.58% ± 0.6), Hafnia (3.38% ± 0.7), Ricketsiella 
(3.1% ± 0.8) and Klebsiella (2.8% ± 0.56) in D2; and Lacto-
coccus (8.9% ± 0.12), Carnobacterium (3.51% ± 0.85) and 
Klebsiella (3% ± 0.6) in D3.

Diversity analyses
Alpha diversity analyses (Fig.  3A) revealed differential 
diversity patterns for the studied scenarios, showing Shan-
non index values varying between 2.8 (Scenario D3) and 
3.4 (Scenario D0). Scenario D0 showed the highest mean 
alpha diversity (Shannon’s Index = 3.45 ± 0.38), followed 
by D1 (3.14 ± 0.57), D2 (3.1 ± 0.38) and D3 (2.7 ± 0.38). 
Furthermore, Shannon index varied significantly between 
the four scenarios (H: 7.935; p < 0.05), while no significant 
variance was found between localities (H: 10.45, p > 0.05) 
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and the sex of the bats (H: 105, p > 0.05). Pair-wise com-
parisons of Shannon values showed significant differen-
tiation between scenarios D0 and D3 (Additional file  1: 
Table S3). On the other hand, beta diversity obtained by 
Bray–Curtis distance showed weak statistical differen-
tiation of community structure across scenarios (Fig. 3B; 
ANOSIM’s R: 0.12; p < 0.02), and pair-wise comparison 
showed significant differentiation between D0-D3 and 
D1-D3 (Additional file 1: Table S3). No significant correla-
tion between beta diversity and geographic distance was 
found (Mantel’s r: 0.013, p > 0.05).

Scenarios D0 and D3 displayed the greatest differenti-
ation between each other, both in terms of composition 
regardless of taxonomic hierarchy (Figs.  1 and 2), and 
alpha and beta diversities (Fig.  4). Because only sce-
nario D0 included lactating females, we tested whether 
these samples were influencing the overall results. 
No significant differentiation in alpha (Kruskal–Wal-
lis statistic: 7; p = 1) and beta diversity (ANOSIM’s R: 
-0.16923; p = 0.783) were found between males and 
females (all lactating) within scenario D0 (Additional 
file 1: Figure S3).

Fig. 1 Stacked bar plot of relative abundances of phyla from scenarios D0 (mature and old growth forest), D1 (extensive farming and agriculture), 
D2 (immature and secondary forest), and D3 (urban and intensive agriculture). Fecal samples are displayed on the bottom and scenarios displayed 
at the top
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Differential abundance analyses
Linear discriminant analyses effect size (LEfSe) of all 
scenarios showed a distinct pattern of differentially 
abundant taxa, which were found to be significantly 
more abundant in scenarios D0 and D1 than D2 and 
D3 (Fig.  5). Phylum Gemmatimonadota; orders Bur-
kholderiales, Xanthomonadales, Bdellovibrionales 
and Gemmatimonadales; and families Xanthomona-
daceae, Oxalobacteraceae, Bdellovibrionaceae, Nitros-
omonadaceae, Alcaligenaceae, Nocardioidaceae, 

Gemmatimonadaceae and Rhodocyclaceae were sig-
nificantly more abundant in scenario D0. Phylum Spi-
rochaetota; orders Spirochaetales and Coxiellales; and 
families Spirochaetaceae and Coxiellaceae were sig-
nificantly more abundant in scenario D1. With the 
exception of Alcaligenaceae, which appeared in high-to-
moderate abundance in scenario D3 and low-to-mod-
erate abundance in D1, all aforementioned taxa were 
found in low abundance in scenarios D2 and D3. No sig-
nificant taxa were found at the class and genus levels.

Fig. 2 Stacked bar plot of relative abundances of the top 30 most abundant genera from scenarios D0, D1, D2 and D3. Fecal samples are displayed 
on the bottom and scenarios displayed at the top
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Core microbiome
Core community analysis indicated that 1,293 genera 
were shared by all sites (Fig.  6A). Scenario D0 contained 
the largest number of exclusive genera (n = 239), while 
scenario D2 comprised the least (n = 50). A plot of the 

distance matrix calculated from binary data (presence/
absence of genera) roughly depicted two partially overlap-
ping clusters composed of Scenarios D0-D1 and D2-D3 
(Fig. 6).

Fig. 3 Alpha (A) and beta (B) diversity measures of the four scenarios: D0, D1, D2 and D3. Boxplot of Shannon’s Diversity Index (Kruskal–Wallis 
statistic: 7.935; p = 0.047) is depicted in panel (A). A PcoA of Bray–Curtis distance matrix (ANOSIM’s R: 0.12; p < 0.02) is shown in panel (B). Different 
color intensities in dots from scenarios D0 and D3 are used to indicate the different localities sampled within each scenario (Additional file 1: Figure 
S1 and Table S1 and S2)

Fig. 4 Alpha (A) and beta (B) diversity measures of scenarios D0 and D3. Shannon’s Diversity Index for D0 and D3 is shown in panel A (Kruskal–
Wallis statistic: 64; p = 0.005). Bray–Curtis distance matrix (ANOSIM’s R: 0.28; p < 0.002) for scenarios D0 and D3 is illustrated in panel (B). Alpha 
diversity is also shown in the ordination plot through a color gradient from green (low value) to red (high value)
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Fig. 5 Linear discriminant analysis effect size (LEfSe) of all scenarios. Phylum, order and family taxonomic levels are respectively shown in panels (A, 
B and C). LEfSe threshold of 2 (on a  log10 scale) and a significance threshold of 0.05 were set. p values were adjusted for false discovery rate (FDR) 
method

Fig. 6 Core community analysis of the four scenarios studied. A Venn Diagram of genera shared across and exclusive to localities is shown in panel 
(A). A Non‑metric Multidimensional Scaling plot from a Jaccard distance matrix of presence/absence data is depicted in panel (B)
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Discussion
Similar fecal microbial communities are shared 
among P. kuhlii and other insectivorous bats, regardless 
of the quality of the environment
According to the literature and supported by our results, 
chiropteran’s gut microbiota is mainly represented by 
Firmicutes and Proteobacteria, while the anaerobic phy-
lum Bacteroidetes is underrepresented in bats, but highly 
dominant in other terrestrial mammals [59]. The fast gas-
trointestinal transit of bats and their adaptation to flight 
is believed to be responsible for this Proteobacteria-dom-
inated gut microbiota, as also observed in birds [60].

Although the fecal microbiome is strongly influenced 
by gut microbial communities, guano samples may also 
be strongly influenced by environmental factors [61]. 
Nonetheless, the most abundant genera found in fresh 
feces of P. kuhlii from the four scenarios of our study are 
consistent with the most common taxa identified by NGS 
in guano samples from different bat species around the 
globe, particularly Enterococcus and Bacillus genera [20, 
22, 62].

Bacteriological analyses showed the presence of Escher-
ichia adecarboxylata, Citrobacter freundii, Klebsiella 
oxytoca, Enterobacter agglomerans, E. aerogenes, E. gergo-
viae, Proteus vulgaris and Streptococcus faecalis in feces 
of P. kuhlii from Italy [15]. While Enterobacter, Klebsiella, 
Streptococcus, Escherichia, and Citrobacter genera were 
also present in our analyses, different isolation and detec-
tion techniques could have contributed to different find-
ings such as the high abundance of Enterococcus genera 
across all our studied scenarios. Since most microbes 
remain unculturable, using culture-independent analyses 
in microbiome studies is essential to better understand 
and characterize bacterial communities and their func-
tions [63]. As demonstrated by Newman et  al. in 2018, 
the observation of a high abundance of the genus Vesper-
tiliibacter in scenario D1 from our study would have been 
neglected by culture-dependent analyses [64]. This Pas-
teurellaceae was isolated for the first time in Germany in 
the upper respiratory tract of three different bat species 
of the family Vespertilionidae, including one P. pipistrel-
lus [65]. More recently, it has also been isolated in guano 
samples from a maternal colony of Tadarida brasilien-
sis (family Molossidae) in New Mexico (US), showing a 
greater presence on fresh guano samples over surface or 
subsurface guano samples [63]. However, the role of the 
genus Vespertiliibacter as a commensal or opportunistic 
pathogen for bats is yet to be elucidated. As a dominant 
genus in samples from scenario D1, it may be responsible 
of meaningful functions in the microbiome of these bats.

Despite partial overlapping of fecal microbial commu-
nities exists between bats with different trophic strategies 
[27], diet specialization is generally linked with specific 

microbiota capable of nutrient assimilation [66]. In this 
sense, significant differences in microbiome composition 
between frugivorous, insectivorous and piscivorous bats 
have been reported by several authors [62, 67–69]. More 
recently, different bat dietary habits have also been linked 
to differences in metagenome functions which may be 
linked to specific metabolic pathways [28]. Several most 
abundant genera from our study (Carnobacterium, Serra-
tia, Hafnia, Enterococcus and Lonsdalea) were also found 
to be significantly abundant in some insectivorous bat 
species across Europe, China, Israel, Mexico and Costa 
Rica, compared to piscivorous bat species [68]. Notably, 
we found that Serratia, Hafnia and Lonsdalea genera 
were differentially abundant in P. kuhlii from scenario 
D2. Insectivorous bat species from the former study 
included Pipistrellus kuhlii, other vespertilionid and rhi-
nolophid bats, but specific characteristics of the sampling 
localities were not specified. Moreover, none of the most 
differentially abundant genera present in piscivorous bats 
were represented in our study [68], further supporting 
the current scientific data about the significant impact of 
trophic guilds on fecal bacterial communities [66].

Additionally, the predominant bacterial genera in 
fecal samples from scenario D0 were found to particu-
larly overlap with fecal samples of P. pipistrellus and 
other insectivorous bats from the Netherlands, shar-
ing Carnobacterium, Serratia and Pseudomonas as the 
most abundant genera [17]. Interestingly, we would have 
anticipated greater similarities between either scenario 
D1, D2 or D3 since the bats from the latter study were 
captured in lime-stone mines near villages rather than in 
near pristine habitats. These counterintuitive results may 
be explained by the fact that mines are usually located in 
rural areas and, once mine activities cease, sites tend to 
be partially restored to pre-mining conditions, with mini-
mal human presence [70]. However, persistent environ-
mental pollutants of different mining activities can also 
alter the fecal microbiome of bats and their impacts still 
need to be clarified.

Intensive agriculture and urban landscapes 
may be enhancing intestinal bacterial lineages 
with pollutant‑degrading properties
By linear discriminant analyses effect size (LEfSe), dif-
ferential abundance taxa, including the order Burkholde-
riales, appeared in high abundance in scenario D0. The 
order Burkholderiales constitutes a metabolic and eco-
logically diverse bacterial linage, which includes human 
opportunistic bacteria (mostly nosocomial), animal and 
plant pathogens, bacteria present in wastewater and 
sludge, and bacteria naturally present in soil, freshwater 
and sediment [71, 72]. This order comprises the families 
Alcaligenaceae, Burkholderiaceae, Comamonadaceae, 
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Oxalobacteraceae, Sutterellaceae, Sphaerotilaceae and 
Burkholderiales genera incertae sedis [73]. Our results 
showed that, while Oxalobacteraceae and Alcaligenaceae 
were highly abundant in scenario D0, Alcaligenaceae was 
also the only family overrepresented in scenario D3.

Species belonging to the family Oxalobacteraceae have 
shown the ability to invade and persist in different niches, 
such as plant tissues, Antarctic soil, rivers and lakes, 
groundwater and contaminated soils among others [72]. 
Moreover, species belonging to this family have been 
recovered from patients with clinical disease and are con-
sidered mild and opportunistic human pathogens [72]. 
On the other hand, the family Alcaligenaceae includes 
some well-recognized primary animal and human patho-
gens such as the genus Bordetella [72] and Taylorella [74]. 
Bacteria from the family Alcaligenaceae have also been 
isolated from biogas slurry (genus Advenella) [75], acti-
vated sludge (genera Caenimicrobium and Pusillimonas) 
[76, 77] and other samples from wastewater treatment 
plants (genera Parapusullimonas and Pigmentiphaga) 
[78, 79]. Other bacteria from this family have been iso-
lated from freshwater sources (genus Parvibium) [80] or 
have shown the ability to thrive in different environments 
such as the genus Pusillimonas, isolated from wastewater 
treatment plants, farm soil and poultry manure among 
others [77, 81, 82]. Although the ecological function of 
bacteria shouldn’t be defined solely by their source of iso-
lation, many genera from the family Alcaligenaceae have 
shown the ability to degrade Polychlorobiphenyl (PCB) 
[83], neonicotinoids [84] and aromatic hydrocarbons [71, 
85], pointing out their potential in removing environ-
mental pollutants. The high abundance of Alcaligenaceae 
in bats from scenario D3 may be explained by the gut 
bacterial community’s response to pesticides and other 
pollutants exposure, promoting the growth of detoxifying 
bacteria. The differentially high abundance of this family 
in scenario D0 in contrast to D1 and D2 may not be so 
straightforward. Evidence of atmospheric transport and 
deposition of pollutants into mountain ecosystems (cold-
trapping effect) have been reported for several pollutants, 
including microplastics [86] and semi-volatile organic 
chemical pollutants [87]. Lles de Cerdanya, one of the 
sampled localities in scenario D0, is located in a montane 
area of the southeastern Pyrenees. Therefore, despite 
being far from major populations or industrial centers, 
the high elevation of this village may aid the deposition of 
air chemical pollutants through rain, snow, fog or wind.

The family Alcaligenaceae has been described in the 
fecal microbiome of different bat species [24, 25, 88], 
regardless of their dietary habits or geographic distri-
bution. Furthermore, this family of proteobacteria was 
found to be characteristic of Palla’s Long-tongued bats 
(Glossophaga soricine) foraging in natural forests in 

comparison to those foraging in organic or conventional 
banana monocultures where pesticides were used [43]. 
As a highly diverse bacterial linage, further research is 
needed to understand Alcaligenaceae’s functional signifi-
cance in the gut microbiome of bats.

Multiple variables may explain why healthier ecosystems 
support more resilient fecal bacterial microbiomes
We demonstrated that the richness and diversity of the 
fecal bacterial microbiome of P. kuhlii bats were affected 
by the level of anthropogenic disturbance (Shanon Index; 
p < 0.05), while gender and geographical distance between 
sampling sites had no significant impacts on the micro-
biome composition (Mantel test; p > 0.05). Variation in 
gut microbial diversity of bats has been linked to shifts 
in season (mainly pre- and post-hibernation) and specific 
reproductive states such as lactation or pregnancy [89, 
90]. Three females from scenario D0 were captured dur-
ing the lactation period, when microbial diversity often 
increases [88]. However, no significant differences in 
alpha and beta diversity were found between these lactat-
ing females and the rest of the bats from the same sce-
nario, thereby ruling out any potential effect of lactation 
on the overall microbial diversity.

In our study, P. kuhlii inhabiting pristine forests dis-
played richer fecal bacterial microbiomes than those 
dwelling in degraded environments such as farmlands 
and urban landscapes. Defining what represents a healthy 
gut microbiome has proven difficult, particularly due to 
the high interindividual variability [91]. However, resist-
ance and resilience to external perturbations are among 
the crucial characteristics of a healthy microbiome [92, 
93] and both are positively affected by high microbial 
diversity [32]. Accordingly, the higher alpha diversity dis-
played by feces of Kuhl’s pipistrelles from undisturbed 
forests may be indicative of a more resilient gut micro-
biome compared to that of bats dwelling in disturbed 
environments.

The gut microbiota at the population level is supposed 
to be evolutionarily selected and to remain relatively 
stable across individuals of the same species [94]. Nev-
ertheless, environmental factors can mediate bacterial 
community structure as demonstrated in human and 
other animal studies. Such is the case of industrialization, 
which has been related to shifts in the relative abundance 
of bacterial lineages and reduced microbiota diversity in 
human populations [95, 96]. Human activities have also 
modified how wild animals move through the landscape 
and interact with its biological components [97]. In this 
sense, shifts in intestinal microbiota composition and 
diversity from wild animals have been reported as conse-
quences of habitat fragmentation and encroachment [98, 
99]. Human-disturbed and fragmented landscapes were 
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also associated with significantly lower alpha diversity 
in the gut microbiome of Tome’s spiny rats (Proechimys 
semispinosus) [100]. However, when considering habitat 
fragmentation without additional anthropogenic distur-
bances such as contact with humans and domesticated 
animals, no impacts were detected [100]. Similar to our 
study, Barelli et  al. [101] showed that colobus monkeys 
(Procolobus gordonorum) inhabiting undisturbed forests 
from Tanzania had significantly higher alpha diversity 
than those from disturbed forests. Through functional 
analyses they concluded that this variation was associ-
ated with dietary changes and diversity derived from 
anthropogenic habitat degradation [101].

The Kuhl’s pipistrelle is considered a selective-oppor-
tunist feeder, targeting larger preys over the smaller ones. 
The most important orders of insects in the diet of P. 
kuhlii are Coleoptera, Diptera, Hemiptera, Heteroptera, 
Hymenoptera and Lepidoptera. In the Iberian Peninsula, 
Diptera and Lepidoptera account for the main represent-
ative orders of their diet, and these include several agri-
cultural pests such as Pectinophora gossypiella (i.e. cotton 
pest) [46]. However, as an opportunistic feeder, variation 
in insect diversity and volumetric representation may be 
encountered in the diet of Kuhl’s pipistrelles across differ-
ent types of landscape. Further explorations of P. kuhlii’s 
diet across the different scenarios from this study could 
provide a better overview of how insects respond to 
these specific anthropogenic changes and their potential 
effect on the fecal microbiome of this bat species. Land-
use changes, particularly urbanization and agriculture, 
are probably responsible for the recent decline in insect 
abundance and biotic homogenization [102–104]. Future 
research assessing the potential effects of diet homogeni-
zation on the health of insectivorous bats may highlight 
the relevance of specific habitat conservation strategies.

Another consequence of human activities is the release 
of toxic substances into air, water and land at harm-
ful rates for living beings [105]. Therefore, wildlife that 
manages to thrive and adapt to urban and agricultural 
landscapes faces constant or temporary exposure to 
pollutants and pesticides. A growing body of evidence 
indicates that pesticides may induce changes in the gut’s 
microbiota composition and lead to dysbiosis or altera-
tion of the homeostasis in several host species [106]. 
Insectivorous and frugivorous bats forage equally in plan-
tations -feeding on pests or crops respectively- as well 
as in forests or natural areas. Alpízar et al. [43] revealed 
that nectar-feeding bats Glossophaga soricine foraging 
intensively managed banana plantations had a signifi-
cantly lower alpha diversity than those foraging organic 
banana plantations, and far lower than bats foraging 
natural forests. Although a less diverse diet may explain 
this association, no differences in diet were seen among 

bats foraging intensively managed plantations and those 
foraging organic plantations, suggesting that reduction in 
gut microbiota diversity may be caused by other factors 
such as the use of pesticides [43]. The use of pesticides 
in the studied agricultural, logged, and urban landscapes 
from Catalonia is a common practice (personal observa-
tion). Therefore, the lower alpha diversity of Kuhl’s pipis-
trelles from these scenarios may be further explained by 
similar factors to those suggested in G. soricine [43].

Fecal bacterial microbiome analysis as a potential health 
indicator for free‑ranging insectivorous bat populations
Significant differences in community structure found 
between scenarios D0 and D3, which were not explained 
by geographic distance or different reproductive status, 
highlight the potential impact of human activities on the 
fecal microbiome composition of insectivorous bats. Fur-
thermore, we showed that the fecal bacterial richness of 
wild populations of Kuhl’s pipistrelles decreased along a 
gradient of increasing urbanization and other anthropo-
genic disturbances such as the presence of domesticated 
animals. Due to the fact that loss of microbiota diversity 
opens up niches for opportunistic pathogens [35], our 
results suggest that anthropogenic disturbance may mod-
ify the gut composition and functionality, and pose a risk 
to the health of insectivorous bats.

Owing to its non-invasive nature and simplicity of sam-
pling, we propose the fecal bacterial microbiome as a 
health indicator for free-ranging insectivorous bats. Nev-
ertheless, larger sample sizes, and experimental and longi-
tudinal studies are needed to explore the dynamics of bat’s 
gastrointestinal microbiome through life and its adaptation 
processes to environmental disturbances. Future studies 
should also explore other factors that may modulate differ-
ences in microbiome composition such as bat species, sea-
sonality, diet, and reproductive and physiologic status.

Conclusion
Our study demonstrates a correlation, rather than 
causal relationship, between anthropogenic pres-
sure and the fecal bacterial microbiome of Kuhl’s pip-
istrelles. Nonetheless, the inverse correlation found 
between the level of anthropogenic disturbance and 
the fecal bacterial microbiome richness and diversity 
of P. kuhlii indicates that near pristine and undisturbed 
landscapes could promote more resilient gut microbi-
omes. Studies on physiological parameters for different 
bat species during their variable and complex life cycle 
are needed to establish reference values and, in turn, to 
be able to link microbiome changes to health and dis-
ease status.
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The results of this study generate new questions about 
the impact of degraded habitats on the fitness of bats via 
the microbiome and highlight its potential as a non-inva-
sive bioindicator to assess insectivorous bats’ health. We 
believe that such studies will, additionally, serve as a key 
element of landscape conservation strategies.
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