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Abstract 

Background The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, 
feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut 
microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture 
systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and 
investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S 
ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass 
spectrometry techniques on bighead carp in three culture systems.

Results Our study revealed significant differences in gut microbial communities and metabolic profiles among 
the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut 
microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as 
Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 
wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and 
orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic 
profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and 
"glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such 
as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities.

Conclusions Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead 
carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the 
host’s gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced 
substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut 
microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead 
carp under different culture systems.
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Background
The gut microbiota in fish has been proven to have sig-
nificant effects on the health [1, 2], nutrition [3, 4], and 
metabolism of the host [5, 6].

The fish gut microbiota is shaped by environmental 
factors, including microbial community structure [7], 
diversity, and richness [8]. Previous studies have reported 
significant alterations in the intestinal microbial commu-
nities of various fish species due to environmental factors 
[9–11].

Our previous study [12] showed significant differences 
in bighead carp muscle fatty acids, amino acids, and vola-
tile flavour compounds in different aquaculture systems, 
suggesting that the culture systems could affect muscle 
quality. However, the potential relationship between the 
culture systems and muscle quality needs further explo-
ration [12], where gut microbes may play a crucial role. 
Studies have reported the impact of gut microbiota on 
muscle quality in other species [13, 14]. However, little 
research has been done to explore the microbiota’s role in 
improving fish muscle quality.

Bighead carp (Hypophthalmichthys nobilis), which 
belongs to the order Cypriniformes, family Cyprinidae, 
subfamily Hypophthalmichthyinae, and genus Hypoph-
thalmichthys [15], is referred to China as one of the "four 
major domesticated fish" [16]. It is an omnivorous filter-
feeding fish [17] that is highly popular in China due to 
its affordability, delicious taste, and high nutritional value 
[18]. It is also one of the world’s most important aqua-
culture species [19], with an output of 3.187 million tons, 
accounting for 6.5% of the world’s inland finfish produc-
tion [20]. Previous studies have mainly focused on the 
gut microbiota of bighead carp in ponds [21–26], with 
limited research conducted in lakes [16, 27–30] and res-
ervoirs [28–30]. There is a lack of comprehensive stud-
ies on the gut microbiota of bighead carp in conventional 
culture systems.

Therefore, this study aimed to investigate the impact of 
three typical culture systems on the gut microbiota, gut 
metabolome, and muscle structure of bighead carp. In 
addition, we explored the potential mechanisms by which 
gut microbes and gut metabolites drive changes in mus-
cle quality in bighead carp.

Methods
Fish, culture systems, and sampling
Two-year-old bighead carp with a body length of 
35.0 ± 3.70  cm, body width of 7.8 ± 0.6  cm, and body 
weight of 1.20 ± 0.10  kg were purchased from the same 
breeding farm and cultured in the three culture systems 
in March 2016: NC (Nancheng), which is a culture pond; 
PY (Poyang), which represents the inner lake of Poyang 

Lake, the largest freshwater lake in China; and XHK 
(Xiahuikeng), which is an alpine cold-water reservoir at 
420 m. The water surface areas of NC, PY, and XHK are 
0.53, 40, and 90 ha, respectively.

Bighead carp in NC were fed artificially, while fish in 
PY and XHK were free-range. The biochemical composi-
tion of the formulated feed in NC was moisture ≤ 12.0%, 
crude protein ≥ 28.0%, crude fibre ≤ 11.6%, crude 
ash ≤ 15.0%, crude lipid ≥ 3.5%, total phosphorus ≥ 0.7%, 
and lysine ≥ 1.3%.

A total of 30 bighead carp representing three groups 
with ten replicates were randomly caught and anaesthe-
tized with an overdose of tricaine methane sulfonate in 
March 2017. The hindgut content of bighead carp was 
extracted under aseptic conditions, washed with phos-
phate buffer saline, placed in sterile centrifuge tubes, fro-
zen in liquid nitrogen until fully frozen, and then stored 
at − 80 °C for deoxyribonucleic acid (DNA) and metabo-
lite extraction. The white epaxial muscle was cut trans-
versely into 0.5 × 0.5 cm blocks and fixed in formalin for 
24 h.

Environmental factors measurement
During the cultural period, environmental factors of the 
culture systems were tracked every season. Water tem-
perature (WT), dissolved oxygen (DO), pH, nitrate nitro-
gen  (NO3-N), and ammonium nitrogen  (NH4-N) were 
measured by YSI Pro Plus multiparameter instrument. 
Transparency was obtained by measuring the maximum 
visible depth of the Secchi disk underwater.

Muscle histology
Fixed blocks were embedded in paraffin, sectioned, and 
stained with hematoxylin and eosin [31]. Tissue images 
were photographed using a Nikon DS-Ri2 microscope 
camera. Muscle cells from the image of each sample were 
segmented with Cellpose 2.0 software [32]. The long and 
short diameters of muscle fibres were measured with Fiji 
[33].

DNA extraction, 16S ribosomal ribonucleic acid rRNA (16S 
rRNA) gene sequencing, and data processing
According to the instruction manual, DNA from intesti-
nal contents was extracted using a DNeasy PowerSoil Kit 
(QIAGEN, Germany). The concentration and integrity 
of DNA were measured with a NanoDrop 2000 spec-
trophotometer (NanoDrop, USA) and agarose gel. The 
V3–V4 hypervariable region of the bacterial 16S rRNA 
gene was amplified by polymerase chain reaction (PCR) 
with universal primer pairs (343F/798R) [34]. The ampli-
con quality was visualised using gel electrophoresis. The 
PCR products were purified with Agencourt AMPure XP 
beads (Beckman Coulter, USA) and quantified using a 
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Qubit dsDNA assay kit. Sequencing was performed on an 
Illumina NovaSeq 6000 (Illumina, USA).

The raw image data file was transformed into raw 
sequence data through base recognition analysis. Paired-
end reads were preprocessed using Trimmomatic 
software [35], which removed ambiguous bases and low-
quality sequences with average quality scores below 20 
using a sliding window trimming approach. Paired-end 
reads were then assembled using fast length adjustment 
of short reads software [36]. Reads with 75% of bases 
above Q20 were retained, chimaeras were removed, and 
valid tags were obtained using quantitative insights into 
microbial ecology (QIIME) software [37]. Clean reads 
were subjected to primer sequence removal and clustered 
to generate operational taxonomic units (OTUs) with a 
97% similarity cutoff using Vsearch software [38].

All representative reads selected by QIIME were anno-
tated and blasted against the Silva database (v123) [39] 
using the ribosomal database project naïve Bayesian 
classifier (confidence threshold: 70%) [40]. The result-
ing OTU abundance matrix and annotation information 
were exported for downstream analysis.

In MicrobiomeAnalyst [41], the OTU data were fil-
tered and rarefied to the minimum library size. Bacterial 
alpha diversity was assessed using the Shannon, Simp-
son, Chao1, and ACE indices. The distance matrix was 
calculated using non-metric multidimensional scaling 
(NMDS) [42] based on Bray-Curtis distance and visual-
ised by the first two coordinates in NMDS. A one-way 
analysis of similarity (ANOSIM) [43, 44] with 999 per-
mutations was performed to test for the significant differ-
ence between groups using the R vegan [45] and ecodist 
package [46]. Linear discriminant analysis effect size 
(LEfSe) [47] was applied to identify differences in taxa 
composition. The taxa with the logarithm to the base 10 
of linear discriminant analysis (LDA) score > 2.0 and false 
discovery rate (FDR) (Kruskal-Wallis test) < 0.05 were 
regarded as differential taxa. The phylogenetic investi-
gation of communities by reconstruction of unobserved 
states (PICRUSt2) [48] was applied to predict bacterial 
function.

Metabolite extraction
40  μL of internal standards (2-chloro-l-phenylalanine 
in methanol, 0.3  mg/mL, 20  μL; lysophosphatidylcho-
line 17:0 in methanol, 0.01  mg/mL, 20  μL), 600  μL of 
extraction solvent with methanol/water (4/1, volume/
volume) and steel balls were added to the 60  mg sam-
ple. The samples were stored at − 20 °C, ground at 60 Hz 
for 2 min, ultrasonicated for 10 min, held at − 20 °C for 
30 min, centrifuged at 13,000 rpm, and 4 °C for 10 min. 
Then, 300 μL of supernatant was collected and dried in 
a freeze-concentration centrifugal dryer, redissolved in 

a 400  μL mixture of methanol and water (1/4, volume/
volume), vortexed, ultrasonicated, and centrifuged again. 
Finally, 150 μL of supernatant was collected via syringes, 
filtered through 0.22 μm microfilters, and transferred to 
vials for liquid chromatography-mass spectrometry (LC-
MS) analysis.

The 60  mg sample was supplemented with 40  μL of 
internal standard (2-chloro-l-phenylalanine in methanol, 
0.3 mg/mL) and 360 μL of cold methanol. After grinding 
and ultrasonication at 4  °C for 30  min, 200  μL of chlo-
roform was added to each sample and vortexed at 60 Hz 
for 2  min. This was followed by the addition of 400  μL 
of water, another round of vortexing, ultrasonication at 
4 °C for 30 min, storage at − 20 °C for 30 min, and cen-
trifugation for 10 min. Next, 300 μL of supernatant was 
transferred to a vial and dried. To the sample, 80  μL of 
methoxylamine hydrochloride (in pyridine, 15  mg/mL) 
was added, vortexed for 2 min, and incubated at 37 °C for 
90 min. A mixture of 80 μL N, O-Bis(trimethylsilyl)trif-
luoroacetamide (with 1% trimethylchlorosilane), 20  μL 
n-hexane and 10  μL fatty acid methyl esters (C8/C9/
C10/C12/C14/C16, 0.8  mg/mL; C18/C20/C22/C24/C26, 
0.4  mg/mL; all in chloroform) was then added to each 
sample, vortexed for 2 min and then derivatised at 70 °C 
for 60  min for gas chromatography-mass spectrometry 
(GC-MS) analysis.

A quality control (QC) sample was prepared by mix-
ing aliquots of all samples. The QC sample was injected 
every ten runs for assessment of data repeatability.

LC–MS analysis
The derivatised samples were analysed using a Dionex 
Ultimate 3000 RS HPLC system equipped with a 
Q-Exactive quadrupole-Orbitrap mass spectrome-
ter, which had a heated electrospray ionisation source 
(Thermo Fisher, USA). The ACQUITY UPLC HSS T3 
column (1.8 μm, 2.1 × 100 mm, Waters, USA) was used, 
and the binary gradient elution system consisted of (A) 
water (containing 0.1% formic acid, volume/volume) 
and (B) acetonitrile (containing 0.1% formic acid, vol-
ume/volume). Separation was achieved using the fol-
lowing parameters: 0–1 min, 5% B; 1–11 min, 5–100% B; 
11–13  min, 100% B; 13–13.1  min, 100% to 5% B; 13.1–
15 min, 5% B; flow rate, 0.35 mL/min; column tempera-
ture, 50 °C; injection volume, 5 μL.

The mass spectrometer was operated as the following 
parameters: mass range, m/z 70–1000; resolution for the 
full mass spectrum (MS) scan and MS/MS scans, 70,000 
and 17,500, respectively; normalised collision energy and 
stepped normalised collision energy, 20  eV and 40  eV, 
respectively; spray voltage, 3800 V (positive) and 3000 V 
(negative); sheath gas flow rate, 35 arbitrary units; auxil-
iary gas flow rate, 8 arbitrary units; capillary temperature, 
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320  °C; Aux gas heater temperature, 350  °C; S-lens RF 
level, 50 V.

Raw data were collected using UNIFI 1.8.1 software 
and analysed using Progenesis QI 2.3 software (Waters, 
USA) with baseline filtering, retention time correc-
tion, peak recognition, peak alignment, and integration 
operations. Isotopic peaks were excluded, and the mini-
mum intensity was set to 15% of the base peak inten-
sity. Metabolites were identified based using the Human 
Metabolome Database [49], LIPIDMAPS (v2.3) [50], and 
Metabolite Link [51], based on the exact mass number, 
secondary mass fragment, and isotope distribution.

Then, the data matrix was outputted with three-
dimensional datasets, including m/z, retention time, and 
peak intensities. The matrix was reduced by removing 
metabolites with more than 50% missing values, uncer-
tain metabolites, and metabolites with a relative standard 
deviation (RSD) > 0.4 in QC samples. Then, the remain-
ing missing values were imputed by half of the minimum 
value. All metabolites were segmented and normalised 
based on internal standards, and then the internal stand-
ards were removed.

GC–MS analysis
The derivatised samples were separated and analysed on 
an Agilent 7890B gas chromatography system coupled to 
an Agilent 5977A MSD system with a DB-5MS column 
(30 m × 0.25 mm × 0.25 μm) (Agilent, USA). The condi-
tions were set as follows: carrier gas, helium; flow rate, 
1  mL/min; injector temperature, 260  °C; injection vol-
ume, 1  μL by splitless mode. quadrupole temperature, 
150  °C; electron impact ion source, 230  °C. The initial 
oven temperature was 60 °C, ramped to 125 °C at a rate 
of 8 °C/min, to 210 °C at a rate of 5 °C/min, to 270 °C at 
a rate of 10 °C/min, to 305 °C at a rate of 20 °C/min, and 
finally held at 305 °C for 5 min. The ionisation energy was 
70  eV. Mass data were acquired in full-scan mode (m/z 
50–500), and the solvent delay time was 5 min.

The raw data were converted using Analysis Base File 
Converter software and processed via Mass Spectrome-
try-Data Independent Analysis software for peak detec-
tion, deconvolution, alignment, and filtering. Metabolites 
were annotated using a database from Lumingbio com-
pany (China). Internal standard ion peaks with RSD > 0.3 
were removed, and all peaks were segmented and 
normalised based on the internal standard and fatty 
acid methyl esters. All fatty acid methyl esters, inter-
nal standards, and known pseudo-positive peaks were 
then removed. The resulting data matrix was exported, 
including sample information, peak names, and peak 
intensities.

Metabolomics analysis
LC-MS and GC-MS data matrixes were combined and 
imported into Metaboanalyst [52]. The data were trans-
formed and scaled, and then principal component 
analysis (PCA) and orthogonal projections to latent 
structures-discriminant analysis (OPLS-DA) [53, 54] 
were performed. The quality of the OPLS-DA models 
was evaluated with  R2X and  Q2. Permutation tests with 
1000 permutations were carried out to assess the fitting 
of the models. Variable importance in projection (VIP) of 
metabolites was calculated in the OPLS-DA models.

Metabolites with VIP value ≥ 1.0 and p value < 0.05 
were considered significantly differential, and those pre-
sent in all intergroup comparisons were considered key. 
Metabolic pathway analysis (MetPA) was carried out 
on these metabolites, and enriched pathways with p 
value < 0.05 were considered significant.

Association analysis
To investigate potential associations between significant 
gut microbes and metabolites, we used the R psych pack-
age [55]. Spearman rank correlation was applied to filter 
associated microbes and metabolites with p value < 0.05 
and r > 0.8.

Variation partitioning analysis (VPA) was performed 
using the R vegan package to examine the relative impor-
tance of environmental factors for gut microbiota varia-
tion. Redundancy analysis (RDA) with 999 permutations 
was carried out to correlate significantly differential 
microbes at the phylum and genus levels with environ-
mental factors based on the first axis length of detrended 
correspondence analysis calculated by the R vegan 
package.

Statistical analysis
Data analysis was performed using R 4.2.0 [56] and SPSS 
26.0 (SPSS Inc.). The Wilcoxon test and Kruskal-Wallis 
test were used for significance testing. Multiple compari-
sons and the Benjamini-Hochberg method correction 
were performed when the significance in the Kruskal-
Wallis test was less than 0.05. p value or FDR < 0.05 was 
considered statistically significant. We denoted signifi-
cance levels with *, **, and *** representing p value or 
FDR < 0.05, 0.01, and 0.001 between groups, respectively. 
Values were expressed as mean ± standard deviation.

Results
Muscle structure
Significant differences were observed in the muscle 
structure of the three groups of bighead carp. The NC 
group (Fig.  1A) showed tightly arranged muscle fibres, 
less connective tissue, and larger myocytes. The PY group 
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(Fig.  1B) and XHK group (Fig.  1C) had loosely aligned 
muscle fibre, abundant connective tissue, and smaller 
myocytes.

The long and short diameters of the muscle fibres were 
also significantly different among all three groups, with 
NC having the largest, PY the second largest, and XHK 
the smallest (Kruskal-Wallis, FDR < 0.05) (Fig. 1D, E).

Microbial community structure of the gut in bighead carp
The processed data are shown in Additional file  5: 
Table  S1. The microbiota was classified into 19 phyla, 

33 classes, 75 orders, 128 families, 172 genera, and 13 
species.

At the phylum level (Fig.  2A), the different culture 
systems had similar community structures but dif-
fered in abundance. Proteobacteria and Acidobacteria 
were significantly higher in PY and XHK than in NC 
(Kruskal-Wallis test, FDR < 0.05), while Fusobacteria, 
Firmicutes, and Cyanobacteria showed the opposite 
trend (Kruskal-Wallis test, FDR < 0.05). The abundance 
of Gemmatimonadetes was significantly higher in XHK 
than in NC (Kruskal-Wallis test, FDR < 0.05), and Spi-
rochaetae was significantly higher in PY than in NC 

Fig. 1 Transections of muscle tissues and muscle fibres parameters of bighead carp from three groups. A NC × 200; B PY × 200; C XHK × 200; E long 
diameter of muscle fibres; F short diameter of muscle fibres. (MF: muscle fibre; MFN: muscle fibre nucleus; CT: connective tissue). Significance levels 
with *, **, and *** represent FDR < 0.05, 0.01, and 0.001 between groups, respectively (Kruskal-Wallis test)

(See figure on next page.)
Fig. 2 The composition, alpha diversity, beta diversity, and indicator of gut microbiota. A The composition and relative abundance of the top 10 
phyla. The bars with different colours represent different phyla. B The composition and relative abundance of the top 10 genera. The bars with 
different colours represent different genera. C The three groups’ diversity indices (Shannon, Simpson, Chao1, and ACE). The outliers were calculated 
by Tukey’s test. The horizontal lines of the boxplot, from top to bottom, represent the maximum value except for outliers, upper quartile, median, 
lower quartile, and minimum value except for outliers, respectively. D Every point in the plot represents a sample. NMDS plot shows a clear 
separation of every two groups. ANOSIM demonstrates that culture systems significantly impacted the gut bacterial community composition (R > 
0 indicates that the difference between groups is greater than within groups, and FDR < 0.05 indicates that the difference is significant). E, F LEfSe 
analysis: The log LDA score of gut microbiota at the phylum and genus levels (log LDA score > 2.0). The bars with different colours represent the 
significant phyla or genera of the corresponding group. G The heatmap of the top 20 significant pathways predicted by PICRUSt2 (FDR < 0.05). The 
boxes with purpler colours represent higher expression levels, and yellower colours represent lower expression levels
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Fig. 2 (See legend on previous page.)
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(Kruskal-Wallis test, FDR < 0.05) (Additional file  6: 
Table S2).

At the genus level (Fig.  2B), there were significant 
differences in the gut microbial communities. For 
example, the abundance of Macellibacteroides was sig-
nificantly higher in NC than in XHK (Kruskal-Wallis 
test, FDR < 0.05). Clostridium sensu stricto 1, Mycobac-
terium, and Blvii28 wastewater sludge groups were sig-
nificantly more abundant in NC (Kruskal-Wallis test, 
FDR < 0.05) than in the other groups, while Nocardi-
oides and Sphingomonas were significantly less abun-
dant (Kruskal-Wallis test, FDR < 0.05) (Additional file 7: 
Table S3).

The diversity indices of the gut bacteria, such as Shan-
non, Simpson, Chao1, and ACE, are shown in Fig.  2C. 
Overall, the diversity indices in XHK were higher than 
those in NC and PY. However, there were no significant 
differences among groups in Shannon (Kruskal-Wallis 
test, p = 0.063), Simpson (Kruskal-Wallis test, p = 0.070), 
Chao1 (Kruskal-Wallis test, p = 0.093) and ACE (Kruskal-
Wallis test, p = 0.155), which indicated that the impact of 
culture systems on bacterial diversity was limited.

We performed NMDS analysis based on the Bray–
Curtis distance to analyze differences in bacterial com-
munities among groups, as shown in Fig.  2D. NC was 
well separated from the other groups, and PY had a 
microbial community similar to that of XHK. The stress 
value (0.0917 < 0.1) indicated a stable NMDS model. 
ANOSIM and multiple comparisons results indicated 
that every two groups separated significantly (NC vs. 
PY, FDR = 0.002; PY vs. XHK, FDR = 0.039; XHK vs. 
NC, FDR = 0.002), and the culture systems had a sig-
nificant impact on the bacterial community (ANOSIM: 
R = 0.5247; p = 0.001).

To determine the indicator taxa among groups, we 
applied LEfSe and presented the results at the phy-
lum and genus levels in Fig.  2E, F, respectively. The 
results indicated 7 phyla and 8 genera with a signifi-
cant difference among the groups (log LDA score > 2.0, 
Kruskal-Wallis test, FDR < 0.05). At the phylum level, 
Fusobacteria, Firmicutes, and Cyanobacteria were signifi-
cant in NC; Proteobacteria and Spirochaetae were signifi-
cant in PY; and Acidobacteria and Gemmatimonadetes 
were significant in XHK (Additional file 1: Fig S1). At the 
genus level, the indicators were Clostridium sensu stricto 
1, Macellibacteroides, Blvii28 wastewater sludge group 
and Mycobacterium in NC; Aeromonas and Brevinema 
in PY; and Gemmatimonas and Nocardioides in XHK 
(Additional file 2: Fig S2).

PICRUSt2 was utilized to predict bacterial function in 
the three groups. A total of 370 pathways were predicted, 
with 278 pathways identified as significant (Kruskal-
Wallis test, FDR < 0.05), indicating that culture systems 

affected the potential metabolic capacity of gut micro-
biota. Among the significant pathways, almost half of the 
pathways were categorized under "metabolism" (131/278, 
47.12%). Only a few pathways were classified under 
"organismal systems" (49/278, 17.63%), "human diseases" 
(43/278, 15.47%), "cellular processes" (24/278, 8.63%), 
"environmental information processing" (22/278, 7.91%), 
and "genetic information processing" (9/278, 3.24%). The 
top 20 pathways, ranked by p-value, are shown in Fig. 2G, 
with the most altered pathways being "cyanoamino acid 
metabolism", "photosynthesis", and "phenylpropanoid 
biosynthesis".

Metabolic profiling of the gut in bighead carp
A total of 1453 metabolites were detected, with 1168 
identified by LC-MS and 285 by GC-MS. These metab-
olites included 681 lipids and lipid-like molecules, 184 
organic acids and derivatives, 95 organic oxygen com-
pounds, 76 organ heterocyclic compounds, 61 ben-
zenoids, 33 phenylpropanoids and polyketides, etc. 
(Additional file 8: Table S4).

The data were subjected to PCA to compare the three 
groups’ metabolic composition. The PCA score plot 
(Fig. 3A) could distinguish the three groups. Three prin-
cipal components (PC1, PC2, and PC3) were extracted, 
explaining 41%, 14%, and 11% of the variability, 
respectively.

OPLS-DA was used to analyse the degree of variabil-
ity in intergroup samples. High predictability  (Q2) and 
strong goodness of fit  (R2X,  R2Y) were reflected between 
every two groups (Additional file  9: Table  S5), which 
demonstrated that the models were stable and could be 
used to identify significantly differential metabolites fur-
ther. In the OPLS-DA score plots (Fig. 3B–D), every two 
groups were clearly separated, indicating distinct differ-
ences in metabolic profiling between groups. Permuta-
tion tests indicated that the models were not overfitted 
(Additional file 9: Table S5).

Significantly differential metabolites were screened, 
revealing 710 metabolites in NC compared with PY, 372 
metabolites in PY compared with XHK, and 766 metabo-
lites in XHK compared with NC. A total of 93 common 
significantly differential metabolites were screened in all 
intergroup comparisons, which included 32 lipids and 
lipid-like molecules, 19 organic acids and derivatives, and 
7 organic oxygen compounds (Fig. 3E).

MetPA was conducted on all these metabolites, 
which enriched 27 pathways, of which 11 were signifi-
cant (hypergeometric test, p < 0.05) (Additional file  10: 
Table  S6). These pathways included 4 related to amino 
acid metabolism, 3 to carbohydrate metabolism, 1 path-
way to translation, 1 to nucleotide metabolism, 1 to 
lipid metabolism, and 1 to metabolism of cofactors and 
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vitamins. The significantly altered pathways included 
“aminoacyl-tRNA biosynthesis", "arginine biosynthesis", 
"glyoxylate and dicarboxylate metabolism", "glycine, ser-
ine, and threonine metabolism", "pyrimidine metabolism" 
(Fig. 3F).

The relationship between gut microbiota and metabolites
To explore potential associations between significant gut 
microbes and metabolites under environmental influ-
ence, we utilised Spearman rank correlation. At the phy-
lum level, 26 associations between 17 metabolites and 5 
microbes were found (Spearman rank correlation, r > 0.8, 
p < 0.05) (Fig. 4A). At the genus level, 30 associations were 
obtained for 6 microbes and 20 metabolites (Spearman 
rank correlation, r > 0.8, p < 0.05) (Fig. 4B). The details of 
the correlation can be seen in Additional file  11: Tables 
S7 and Additional file 12: Table S8.

The correlation between environmental factors and gut 
microbiota
Table  1 shows the environmental factors, including 
water temperature (WT), dissolved oxygen (DO), nitrate 
nitrogen  (NO3-N), ammonium nitrogen  (NH4-N), pH, 
and transparency, for the three groups in four seasons. 
PY had the highest water temperature on average, sig-
nificantly higher than the other two groups. NC had the 
highest levels of DO,  NO3-N,  NH4-N, pH, and transpar-
ency, with  NH4-N content significantly higher than that 
in XHK, while other factors were significantly higher 
than the other groups (Kruskal-Wallis test, FDR < 0.05).

Table 2 presents the contribution of environmental fac-
tors to the variation in gut microbiota obtained by VPA. 
All the variation partitioning fractions were significant 
in the permutation test (p < 0.05). Among the environ-
mental factors, pH explained the most variation in gut 
microbiota (43.41%), followed by  NH4-N (43.14%), DO 
(38.34%), transparency (34.41%),  NO3-N (28.28%), and 
WT (19.40%).

To further explore the correlation between environ-
mental factors and significant microbes at the phylum 
and genus levels, redundancy analysis (RDA) was con-
ducted, and the results are shown in Fig. 5. All six canon-
ical axes explain 23.31% of the total variability. The first 
two axes, which contributed 71.20% and 11.45% of the 
explained variance (p < 0.01), respectively, were used for 
further analysis.

The results showed that Fusobacteria and Macellibac-
teroides were positively correlated with all environmen-
tal factors except transparency. Conversely, Spirochaetae, 
Acidobacteria, Gemmatimonadetes, Brevinema, Gem-
matimonas, and Nocardioides exhibited an opposite 
trend. Firmicutes, Cyanobacteria, Clostridium sensu 
stricto 1, Blvii28 wastewater sludge group, and Mycobac-
terium positively correlated with  NH4-N, pH, DO, and 
 NO3-N, while exhibiting negative correlations with WT 
and transparency. On the contrary, Proteobacteria and 
Aeromonas showed the opposite trend.
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Discussion
This study demonstrates the impact of culture systems 
on the gut microbiota and metabolic profiles of bighead 
carp.

Culture systems greatly influence the gut microbiota 
of bighead carp.
In the current study, the dominant phyla in bighead 
carp’s gut microbiota were Proteobacteria, Fusobacte-
ria, Actinobacteria, Bacteroidetes, and Firmicutes, con-
sistent with previous findings in marine and freshwater 
fishes [11, 57–59] and supporting Luo’s research on 
bighead carp [21]. Among all phyla, especially Cyano-
bacteria, it is considered to be directly consumed by 
filter-feeding fish [60]. As a filter-feeding planktivorous 
carp, bighead carp easily filter some colony-forming 
cyanobacteria [27, 61, 62]. The abundance of Cyano-
bacteria in the hindgut was significantly higher in NC 
than in the other two groups (Additional file  1: Fig 
S1C), possibly due to differences in food sources in the 
three culture systems.

Alpha and beta diversity are important parameters 
used to evaluate the structural characteristics of micro-
biota. In our study, gut microbiota diversity and richness 
were higher in alpine cold-water reservoirs and inner 
lakes than in ponds, consistent with other research [9, 
11, 63, 64]. This could be due to larger habitats providing 
a wider range of diets. Therefore, fish may be constantly 
exposed to more bacteria [65].

Beta diversity analysis revealed significant differences 
in the gut microbial communities of bighead carp in all 
three culture systems, in agreement with other studies [9, 
11]. This may be due to culture environments, diet, and 
genetics [66]. The VPA results showed that environmen-
tal factors explained up to 43.41% of the variation in the 
gut microbiota, which indicates a great influence of envi-
ronmental factors. Diet is considered a critical factor in 
regulating the gut microbiota composition [67], and dif-
ferent bait provided by different culture systems could be 

an important reason for the differences in gut microbiota 
diversity. The bighead carp used in our study were from 
the same batch reared in the same hatchery and shared a 
similar genetic background, so the effect from the genetic 
background was relatively small. Therefore, we believe 
that differences in environmental factors and diet were 
the main causes of the significant differences observed.

LefSe analysis revealed 15 biomarkers that may cause 
significant differences in communities. At the phylum 
level, these included Fusobacteria, Firmicutes, Cyano-
bacteria, Proteobacteria, Spirochaetae, Acidobacte-
ria, and Gemmatimonadetes; at the genus level, these 
included Clostridium sensu stricto 1, Macellibacteroides, 
Blvii28 wastewater sludge group, Mycobacterium, Aero-
monas, Brevinema, Gemmatimonas, and Nocardioides. 
Clostridium is typically considered the most efficient lig-
nocellulose degrader due to the presence of multienzyme 
complexes [68, 69] consisting of multiple cellulases and 
hemicellulases in combination with enzyme-free scaffol-
din [70–72] that synergistically and efficiently degrade 
lignocellulose. They also contribute to the host’s nutri-
tion by supplying fatty acids and vitamins [73]. Macel-
libacteroides are capable of decomposing cellulose- and 
hemicellulose-derived sugars [74]. Several species of 
Aeromonas can produce cellulase [75] and have intensive 
cellulolytic activity [76, 77]. Although bighead carp are 
important plankton feeders [78], they lack the cellulase 
enzyme that breaks down the cell walls of algae in their 
gut [79]. We hypothesise that the cellulolytic action of 
these bacteria compensates for this deficiency in bighead 
carp and that bighead carp derive energy and nutrients 
from this process [27]. The abundance of both Clostrid-
ium sensu stricto 1 and Macellibacteroides was positively 
correlated with the long and short diameter of muscle 
fibres (Spearman Rank Correlation). These may suggest 
that the culture systems improve nutrition levels and 
muscle quality in bighead carp by affecting gut microbes.

PICRUSt2 is a tool used for metagenome predic-
tion to predict the approximate functional potential of 
a community [48]. In our study, 278 significantly differ-
ent KEGG pathways were predicted, most of which were 
involved in metabolism, and organic systems, revealing 
the possible functional mechanisms of culture systems 
affecting gut microbes.

In conclusion, the culture systems significantly alter the 
community structure of gut microbiota and potentially 
impact their metabolic profiling.

Culture systems have a significant impact on gut metabolic 
profiling.
Gut metabolites are the outcome of the joint metabolism 
of the host and microbial community and can reflect the 

Table 2 The relative contributions of environmental factors to 
variation in gut microbiota

Significance levels with *, **, and *** represent p-value < 0.05, 0.01, and 0.001 
between groups, respectively (permutation test)

Environmental factors Variance explained Sig

pH 0.4341 0.001***

NH4-N 0.4314 0.001***

DO 0.3834 0.001***

Transparency 0.3441 0.003**

NO3-N 0.2828 0.001***

WT 0.19398 0.022*
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outcomes of nutrient uptake, digestion, and absorption 
by the gut microbiota [80].

In this study, multivariate statistical analyses, including 
PCA and OPLS-DA, revealed significant changes in the 
intestinal metabolite profile of bighead carp under differ-
ent culture environments, reflecting the significant influ-
ence of the environment on the joint metabolism of host 
and gut microbes.

Further exploration of the differential metabolites 
showed that 93 key metabolites were significantly 
enriched in 11 pathways, of which 4 were related to 
amino acid metabolism and 1 to translation, including 
"aminoacyl-tRNA biosynthesis", "arginine biosynthesis", 
"glycine, serine, and threonine metabolism", "alanine, 
aspartate, and glutamate metabolism", and "cysteine and 
methionine metabolism". The enriched pathways suggest 
that the culture systems exerted an important impact on 
host-microbe joint metabolism in the gut, particularly on 

amino acid metabolism and protein translation-related 
metabolic pathways.

Overall, the culture systems significantly altered intes-
tinal metabolism.

Potential association of fish muscle quality with microbes 
and metabolites in the gut
Several studies have demonstrated the beneficial role of 
gut microbes in improving muscle quality. For example, 
mice supplemented with Lactobacillus plantarum were 
accompanied by a change in muscle fibre type, that is, a 
significant increase in the proportion of type I fibres in 
the gastrocnemius muscle [13]. And when gut microbiota 
from obese Rongchang pigs and lean Yorkshire pigs were 
transferred to germ-free mice by faecal transplantation, 
mice fed Rongchang pig faeces tended to have increased 
body fat weight, increased percentage of slow muscle 

Fig. 5 The correlation among samples, environmental factors, and significant microbes. Blue and yellow arrows indicate vectors of significant 
microbes at the phylum and genus levels, respectively, while red arrows represent vectors of environmental factors. A positive correlation is 
indicated when the angle between vectors is less than 90°, while a negative correlation is indicated when it is greater than 90°. The vectors are 
perpendicular to each other to indicate irrelevance
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fibres, decreased diameter and cross-sectional area of 
the gastrocnemius muscle, and increased fat in gastroc-
nemius muscle compared to the mice fed Yorkshire pig 
faeces [14]. However, the mechanisms underlying these 
effects are not well understood.

Amino acids are important components of fish muscle 
quality [81]. Intestinal microorganisms regulate amino 
acids mainly through two mechanisms. On the one hand, 
microbes can utilise amino acids, producing acetic acid 
[82], propionic acid, butyric acid [83], hydrogen sulfide 
 (H2S) [83, 84], polyamine [85], phenolic and indole com-
pounds [86]. These metabolites play a crucial role in regu-
lating host physiology [87]. However, this process exists 
in the large intestine and is largely not absorbed by the 
colonic mucosa [88], making it difficult to influence the 
host’s amino acid metabolism. On the other hand, intes-
tinal microbes can synthesise amino acids de novo [89]. 
Numerous reports of microbes synthesising amino acids 
affect the host’s amino acid metabolism; for example, 
microbial lysine can be incorporated into host proteins, 
as observed in uremic patients and subjects consuming 
a low-protein diet [90, 91]. The significant contribution 
of microbial-derived lysine and threonine to free plasma 
lysine and threonine has also been observed in studies 
of nitrogen (protein)-sufficient diets in adults [89, 92]. In 
pigs fed diets incorporating 15N-NH4Cl and 14C-poly-
glucose, microbially produced amino acids such as valine, 
isoleucine leucine, phenylalanine, and lysine were found 
to be incorporated into human proteins [93] and absorbed 
mainly from the small intestine [93, 94]. In the present 
study, we found that L-cysteine, L-lysine, and L-threonine 
differed significantly among the three groups (Kruskal-
Wallis test, FDR < 0.05) (Additional file 3: Fig S3A, S3B, 
S3C), and their levels were positively correlated with 
muscle quality. We suggest that these amino acids may be 
synthesised de novo by gut microbes and absorbed by the 
host, affecting the changes in amino acids in fish muscle 
and thus improving the quality of fish muscle.

Based on this hypothesis, we established the asso-
ciation between gut microbes and relevant metabolites 
using Spearman Rank Correlation with a cutoff of r > 0.65 
and consequently inferred which microbes perform 
the corresponding functions using the R corrr package. 
According to the analysis, several bacteria, including 
uncultured Chloroflexi bacterium, Pedobacter, Azohy-
dromonas, Sinomonas, Patulibacter, Sorangium, Alter-
erythrobacter, and Bryobacter, may be potential amino 
acid-synthesising bacteria, as shown in Additional file 4: 
Fig S4. However, it’s important to note that these find-
ings are based on inference and correlation, and further 
experimental validation would be necessary to confirm 
these associations.

Additionally, certain metabolites may contribute to 
improving muscle quality in fish, such as glutamine 
which can increase the activity of the mammalian tar-
get of rapamycin (mTOR), a protein kinase that regu-
lates protein synthesis in animal tissues and cells [95]. 
Although not yet available for fish [96], our study found 
that glutamine was the most abundant metabolite in the 
XHK group, followed by PY and NC (Additional file  3: 
Fig S3D), which is consistent with the muscle quality 
revealed by muscle microstructure. This suggests that 
glutamine could be a potential metabolite to enhance 
muscle quality in fish.

The flavour is one of the most important factors in 
influencing the edible quality of fish [97]. Nucleotides 
are a taste-active substance [98], among which the 
nucleotides inosine-5’-monophosphate (5’-IMP) and 
adenosine-5’-monophosphate (5’-AMP) contribute sig-
nificantly to umami taste. They work in synergy with 
glutamate to intensify the taste sensation by binding to 
the same receptors, taste receptor type 1 members 1 and 
3 [99, 100]. In our previous study, bighead carp in XHK 
exhibited a stronger umami intensity compared to other 
groups [12]. IMP is also considered an umami substance 
for fish products [101]. In the current study, 5’-IMP and 
glutamate followed the same trend of differences among 
the groups (Kruskal-Wallis test, FDR < 0.05) (Additional 
file 3: Fig S3E, S3F). This indicates that 5’-IMP and gluta-
mate are probably the metabolites responsible for making 
the muscle of bighead carp tastier.

These findings suggest that gut microbiota and metab-
olites may play important roles in determining muscle 
quality in fish. This provides a practical direction for 
future research to improve the muscle quality of big-
head carp. To verify the role of these gut microbes and 
metabolites, we may isolate and extract intestinal flora 
and conduct transplantation in aseptic mice, as well as 
supplement metabolites.

Conclusions
It is evident that culture systems significantly impact the 
intestinal microbiota and metabolites of bighead carp. 
Our findings demonstrate that the culture systems not 
only alter the gut microbial community of bighead carp, 
with notable variations in community structure, abun-
dance, and potential metabolic functions, but also affect 
host gut metabolism, particularly with significant enrich-
ment in pathways related to amino acid metabolism. 
Moreover, we discuss potential mechanisms that may 
impact muscle quality. We hypothesize that significantly 
different amino acids in the gut are the primary cause of 
the effect on muscle quality. Based on this hypothesis, 
we suggest that gut microbes may play a role in altering 
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muscle quality in fish through the biosynthesis of amino 
acids.

Further investigation into the potential associa-
tion between fish muscle quality and gut microbes and 
metabolites can provide a foundation for enhancing big-
head carp’s muscle quality and nutritional value.
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Additional file 1. Fig S1. The relative abundance of indicator taxa at the 
phylum level. (A) Fusobacteria. (B) Firmicutes. (C) Cyanobacteria. (D) Pro-
teobacteria. (E) Spirochaetae. (F) Acidobacteria. (G) Gemmatimonadetes. 
Significance levels with *, **, and *** represent FDR < 0.05, 0.01, and 0.001 
between groups, respectively (Kruskal-Wallis test).

Additional file 2. Fig S2. The relative abundance of indicator taxa at the 
genus level. (A) Clostridium sensu stricto 1. (B) Macellibacteroides. (C) Blvii28 
wastewater sludge group. (D) Mycobacterium. (E) Aeromonas. (F) Brevinema. 
(G) Gemmatimonas. (H) Nocardioides. Significance levels with *, **, and 
*** represent FDR < 0.05, 0.01, and 0.001 between groups, respectively 
(Kruskal-Wallis test).

Additional file 3. Fig S3. Normalised peak intensity of potential metabo-
lites which influence fish muscle quality (A) L-cysteine. (B) L-lysine. (C) 
L-threonine. (D) glutamine. (E) 5’-IMP. (F) L-glutamate. Significance levels 
with *, **, and *** represent FDR < 0.05, 0.01, and 0.001 between groups, 
respectively (Kruskal-Wallis test).

Additional file 4. Fig S4. Potential microbes synthesising amino acids. 
The curves represent the correlation between metabolites and microbes, 
with greener colours representing stronger positive correlations and yel-
lower colours representing stronger negative correlations.

Additional file 5. Table S1. The abundance and taxonomy of OTUs.
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