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Abstract 

Background The gut microbiome forms at an early stage, yet data on the environmental factors influencing the 
development of wild avian microbiomes is limited. As the gut microbiome is a vital part of organismal health, it is 
important to understand how it may connect to host performance. The early studies with wild gut microbiome have 
shown that the rearing environment may be of importance in gut microbiome formation, yet the results vary across 
taxa, and the effects of specific environmental factors have not been characterized. Here, wild great tit (Parus major) 
broods were manipulated to either reduce or enlarge the original brood soon after hatching. We investigated if brood 
size was associated with nestling bacterial gut microbiome, and whether gut microbiome diversity predicted survival. 
Fecal samples were collected at mid‑nestling stage and sequenced with the 16S rRNA gene amplicon sequencing, 
and nestling growth and survival were measured.

Results Gut microbiome diversity showed high variation between individuals, but this variation was not significantly 
explained by brood size or body mass. Additionally, we did not find a significant effect of brood size on body mass or 
gut microbiome composition. We also demonstrated that early handling had no impact on nestling performance or 
gut microbiome. Furthermore, we found no significant association between gut microbiome diversity and short‑term 
(survival to fledging) or mid‑term (apparent juvenile) survival.

Conclusions We found no clear association between early‑life environment, offspring condition and gut microbi‑
ome. This suggests that brood size is not a significantly contributing factor to great tit nestling condition, and that 
other environmental and genetic factors may be more strongly linked to offspring condition and gut microbiome. 
Future studies should expand into other early‑life environmental factors e.g., diet composition and quality, and paren‑
tal influences.
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Introduction
The digestive tract hosts a large community of differ-
ent microorganisms (i.e., gut microbiome) and is known 
to be a fundamental part of organismal health and a 

powerful proximate mechanism affecting host perfor-
mance [1, 2]. The gut microbiome has been studied 
across a wide range of animal taxa e.g., humans [3–5], 
fish [6], and economically important species such as 
poultry [7], and data from wild populations is slowly 
increasing [8]. Generally, a more diverse gut microbi-
ome is considered beneficial for individual health [9], but 
there are also community structure effects that define 
the functionality [10]. For example, laboratory-bred mice 
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with a less diverse gut microbiome have a substantially 
lower chance of surviving an influenza infection com-
pared to their wild counterparts unless receiving a gut 
microbiota transplant from their wild counterparts [11, 
12]. Moreover, gut microbiome had been linked to host 
fitness and survival in the Seychelles warbler (Acrocepha-
lus sechellensis). Individuals that harbored opportunistic 
pathogens, i.e., microbes that usually do not cause dis-
ease in healthy individuals, but may become harmful in 
individuals that are immunocompromised, in their gut 
microbiome showed higher mortality [13, 14]. Therefore, 
understanding how gut microbiome affects fitness within 
and between individuals is necessary for not only under-
standing species survival but also evolution [15–17].

Gut microbiome forms at a young age and remains 
somewhat stable in adulthood as found for example in 
laboratory bred mice [18–20]. Disruption in the gut 
microbiome that leads to a microbiome imbalance at 
a young age could result in both short-term and long-
term changes in the gut microbiome [21, 22]. Of the 
environmental effects, diet [23], including e.g., macro-
nutrient balance (carbohydrates, fats, amino acids) [3, 
24] has been concluded to be major determinants of rat 
and mouse gut microbiome, and this effect has recently 
been seen in avian models as well [25–28]. Moreover, 
macronutrient balance has been linked to intestinal 
microbiome composition [3, 24] and the functioning of 
individual immune response [29, 30]. However, as a large 
part of the prior research has focused strictly on humans 
or species living in controlled environments in which 
environmental effects on both the microbiome and host 
are sidelined [31, 32], many species, including most birds 
[8], have only started to attract attention [33].

The mechanisms of bacterial colonization of the bird 
gut are somewhat unique as avian life-histories differ sig-
nificantly from those of e.g., mammals [34]. In mammals, 
the offspring are exposed to bacterial colonization dur-
ing vaginal birth [35] and lactation [36, 37], whereas bird 
hatchlings are exposed to bacteria first upon hatching 
[20, 38]. Few studies have investigated the possibility of 
bacterial colonization in ovo, but results are still lacking 
[39]. Genetics [40–42] as well as the post-hatch environ-
ment [20, 43–46] have a significant effect on the forma-
tion of the avian gut microbiome. Once hatched, most 
altricial birds feed their young, which exposes the hatch-
lings to various bacteria that originate from the parents 
i.e., via vertical transmission [47]. It has also been shown 
that environmental factors are major contributors in the 
formation of gut microbiome [48–51], one of these being 
the rearing environment in the nest [44].

As early-life environment is connected to the estab-
lishment of gut microbiome, brood size may affect gut 
microbiome [52]. Brood size is often associated with 

parents’ performance and ability to feed their young [53], 
and the trade-off between offspring quality and quantity 
has been studied widely [54, 55]. Food quantity per nest-
ling can decrease in enlarged broods, as parents may not 
be able to fully compensate for the additional amount of 
food an enlarged brood requires [56, 57]. For example, 
in great tits (Parus major) it has been shown that nest-
lings from reduced broods may have a higher body mass 
[58] and tend to survive better [59]. Importantly, great 
tit nestling body mass has been connected to gut micro-
biome diversity and composition: body mass positively 
correlates with gut microbiome richness [52]. This could 
imply that good physiological condition and high food 
availability would allow the host to have a diverse gut 
microbiome that promotes a healthy gut.

Alterations in early-life gut microbiome could have 
long-term consequences on individual performance [60], 
yet such effects have rarely been studied in wild organ-
isms. In wild birds, some bacterial taxa have been linked 
to better survival. For example, a high abundance of bac-
teria in the order Lactobacillales of the phylum Firmi-
cutes is related to higher individual fitness in Seychelles 
warblers [14] and great tits [61]. These bacteria are also 
known for the benefits for bird health in economically 
important species such as poultry, in which Lactobacilli 
are used as probiotics to boost immune functioning [62]. 
Besides Lactobacillales, gut bacteria belonging to other 
genera such as Clostridium and Streptococcus are impor-
tant for the degradation of non-starch polysaccharides 
and for the synthesis of essential molecules such as the 
short-chain fatty acids [63, 64]. Short-chain fatty acids 
are important in host energy metabolism [65] and there-
fore crucial for performance. Changes in nestling’s early-
life gut microbiome could affect such key physiological 
processes that could influence for example nestling body 
mass, which is tightly linked to survival to fledging [58, 
59]. Because the gut microbiome establishes at a young 
age and is less plastic later in life [18–20], gut microbi-
ome and changes to its richness can have long-term 
effects on juvenile and adult survival [21, 22]. For exam-
ple, antibiotic treatment at infancy can affect the expres-
sion of genes involved in immune system functioning and 
lead to long-term effects on host metabolism [20]. More-
over, changes in the rearing environment can affect indi-
vidual physiology and these effects can carry over to later 
stages of an individual’s life such as survival to fledging 
and lifetime reproductive success [66].

Here, we use an experimental approach to investi-
gate whether brood size manipulation influenced wild 
great tit nestlings’ bacterial gut microbiome diver-
sity on day 7 post-hatch. We also investigated whether 
brood size influenced nestling body mass on day 7 or on 
day 14 post-hatch, and if the gut microbiome predicts 
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short-term (i.e., survival to fledging) and mid-term (i.e., 
apparent juvenile) survival. The great tit is a well-studied 
species in the fields of ecology and evolution, and it is 
easy to monitor in the wild due to its habit of breeding 
in nest boxes. Great tit nestlings’ gut microbiome under-
goes profound shifts during early life [52], and it has been 
linked to nestling natal body mass and body size [52, 61], 
yet studies focusing on gut microbiome associations with 
survival are still scarce. Here, we manipulated wild great 
tit broods by reducing or enlarging the original brood 
size in order to analyze if this affected the gut microbi-
ome. In large broods, nestlings need to compete for their 
food more [67, 68], and the lower food availability could 
result in a lower gut microbiome diversity. This might 
impair nestling body mass and fitness prospects [13, 52]. 
We used a partial cross-fostering design that enabled us 
to disentangle the relative contributions of genetic back-
ground, early maternal effects, and rearing environment 
such as parents, nest and nestmates on gut microbiome. 
Furthermore, we used an unmanipulated control group 
in which no nestling was cross-fostered to control for the 
possible effects of moving the nestlings between nests. 
For example, early human handling such as marking and 
weighing at day 2 post-hatch could influence gut microbi-
ome later on. We hypothesized that (1) in reduced broods 
nestlings would have a higher body mass, (2) in reduced 
broods nestling gut microbiome would be more diverse 
than in enlarged broods, and (3) higher gut microbiome 
diversity on day 7 post-hatch would increase survival to 
fledging and potentially reflect apparent juvenile sur-
vival. Such knowledge could provide new information 
about gut microbiome in wild passerine bird population 
and how the early-life environment may associate with 
nestling gut microbiome, body mass, and short-term and 
mid-term survival.

Methods
Study area and species
The great tit is a small passerine bird, which breeds in 
secondary holes and artificial nest-boxes, making it a 
suitable model species. Great tits breed throughout 
Europe and inhabit parts of Northern Africa and Asia as 
well, and the breeding areas differ in environment and 
diet [69]. In Finland the great tit is a common species 
with an estimate of 1.5 to 2 million breeding pairs. They 
lay 6 to 12 eggs between April and May and the female 
incubates the eggs for 12–15  days. The nestlings fledge 
approximately 16 to 21 days after hatching. The study was 
conducted during the breeding season (May–July 2020) 
on Ruissalo island (60°25′59.99″ N 22°09′60.00″ E). Ruis-
salo island habitat is a mostly temperate deciduous for-
est and meadows, and some areas have small patches of 
coniferous trees.

Brood size manipulation experiment
Nest boxes were first monitored weekly and later daily 
when clutches were close to the estimated hatching date. 
Brood size manipulation took place on day 2 after hatch-
ing. Increases in great tit brood size can lead to lowered 
weight in both the nestlings and adults [70–75], and our 
decision on the number (i.e., + 2 or − 2) of manipulated 
nestlings (i.e, + 2 or − 2) followed the cited studies. We 
had four treatment groups (see Fig.  1): in the ‘enlarged 
group (henceforward called E)’, we increased the brood 
size by two individuals that were taken from a ‘reduced 
brood’. Correspondingly, in the ‘reduced group (hence-
forward called R)’, we decreased the brood size by two 
individuals, that were added to the enlarged broods. In 
the ‘control group (henceforward called C)’, we swapped 
nestlings between nests but did not change the brood 
size. And lastly, in the ‘unmanipulated control group 
(henceforward called COU)’, we only weighed and col-
lected fecal samples on day 7 but did not move the nest-
lings between nests. We also moved nestlings between 
the reduced nests to ensure that all nests except for COU 
had both original and fostered nestlings. Control nests 
were used to control for potential cross-fostering effects 
unrelated to brood size. Additionally, in the unmanipu-
lated control group nestlings were not moved or weighed 
on day 2 in order to control for any handling effects per 
se. This study design enabled us to test the potential 
impacts of handling nestlings and swapping the nest early 
after hatching. We aimed to move approximately half of 
the chicks in the manipulated nests, so that the number 
of original and the fostered nestlings would be the same 
in each nest after manipulation.

Before they were moved, nestlings were weighed using 
a digital scale with a precision of 0.1  g and identified 
by clipping selected toenails. We aimed to add/remove 
nestlings that were of similar weight to avoid changing 
the sibling hierarchy in the brood. The moving proce-
dure was performed as quickly as possible to minimize 
the risk of stress and the nestlings were kept in a warmed 
box during transportation. For each pair of nests in the 
brood size manipulation experiment, we selected nests 
that had a similar hatching date. In case of uneven num-
ber of nests hatching within a day, one or three nest(s) 
was/were allocated to the COU group. To avoid poten-
tial bias from hatching date, we allocated nests in any 
given day evenly to each treatment. We also checked 
that the treatments had an equal brood size on average 
i.e., we did not want to only reduce the larger clutches 
and enlarge the smaller clutches. These is also a signifi-
cant bias towards COU nests being later in the season on 
average (Table 1).
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Fecal sample collection
To study the effects that brood size may have on the nest-
ling gut microbiome and its links to individual nestling 
body mass, survival to fledging and apparent juvenile 
survival, we used a subset of data from a larger experi-
ment (Cossin-Sevrin et  al., unpublished data). In this 
subset, we use individuals from which fecal samples were 
collected on day 7 after hatching and analyzed for micro-
biome diversity and composition (C = 23 nestlings/15 
nests, COU = 22/13, E = 23/15, R = 24/16) We aimed to 
collect two samples (one from original and one from fos-
ter nestlings) per nest. Fecal samples from the nestlings 
were collected gently by stimulating the cloaca with the 
collection tube. Samples were collected straight into a 
sterile 1.5 ml Eppendorf tube to avoid possible contami-
nation of the sample. At time of sampling, each nest-
ling was weighed (0.1  g), and the nestlings were ringed 
for individual identification using aluminum bands. 
The samples were stored in cool bags onsite and after-
wards moved to a -80  °C freezer for storage until DNA 
extraction.

Apparent juvenile survival
We monitored all study nests until fledging to measure 
short-term survival. On day 14 post-hatch, the sampled 

nestlings were weighed, and wing-length was measured 
to detect if the manipulation had any effects on nestling 
growth. Nests were subsequently monitored for fledging 
success. Additionally, we monitored our study population 
for apparent juvenile survival (i.e., mid-term survival) 
after the breeding season (i.e., approximately 3  months 
after fledging) to assess the association between gut 
microbiome and post-fledging survival. We captured 
juvenile great tits by mist netting during the autumn–
winter 2020 at six different feeding stations that had a 
continuous supply of sunflower seeds and suet blocks. 
Feeding stations were located within the previously men-
tioned nest box population areas. For each site mist net-
ting with playback was conducted on three separate days 
during October–November 2020 for three hours at a 
time, leading to a total of 69 h of mist netting. A total of 
88 individuals from the brood size manipulation experi-
ment were caught, and the caught juvenile great tits were 
weighed, and wing length was measured. Our catching 
method provides an estimate of post-fledging survival 
yet, it could be slightly biased based by dispersal. In a 
previous study in our population [76], none of the birds 
ringed as nestlings were recaptured outside the study 
area, suggesting that dispersal is likely limited.

Before manipulation After manipulation

Control 

Unmanipulated control

Moved across broods but 
original and manipulated brood 
sizes were identical.

Not moved at all, but only 
sampled for a fecal sample at 
day 7 post-hatch.

Enlarged nest gained four nestlings from reduced 
nest. Additionally, two nestlings from the original 
enlarged nest were moved to the reduced nest. 

Reduced nest lost two nestlings when four of 
the nestlings were moved to the enlarged nests 
and only two nestlings were moved back to the 
reduced nest.

E 

R 

C 

COU 
Fig. 1 Brood size manipulation experiment schematic diagram. 2‑day‑old nestlings were moved between nestboxes to enlarge or to reduce 
original brood size (an example with brood size of seven is given). Some nests were kept as control nests (nestlings were moved but brood size 
remained the same) and some were kept as unmanipulated control nests (nestlings were not moved at all to test whether early‑life handling affects 
gut microbiome). The original brood size varied between nests



Page 5 of 16Liukkonen et al. Animal Microbiome            (2023) 5:19  

DNA extraction and sequencing
We chose two samples per nest for DNA extraction, yet 
in such a way that both fledged and not-fledged nestlings 
would be included in the dataset. DNA was extracted 
from nestling fecal samples using the Qiagen QIAamp 
PowerFecal Pro DNA Kit (Qiagen; Germany) following 
the manufacturer’s protocols. Additionally, we included 
negative (RNAse and DNAse free  ddH2O) controls to 
control for contamination during DNA extraction and 
additional controls to confirm successful amplification 
during PCR. A short fragment of hypervariable V4 region 
in the 16S rRNA gene was amplified using the purified 
DNA samples as template with the following primers: 
515F_Parada (5’-GTG YCA GCMGCC GCG GTAA-3’) and 
806R_Apprill (5’-GGA CTA CNVGGG TWT CTAAT-3’) 
[77, 78]. PCRs were performed in a total volume of 12 µL 
using MyTaq RedMix DNA polymerase (Meridian Bio-
science; Cincinnati, OH, USA). The PCR cycling condi-
tions were as follows: first, an initial denaturation at 95 °C 
for 3 min followed by 30 cycles of 95  °C for 45 s, 55  °C 
for 60 s, and 72  °C for 90 s, and finished with a 10-min 
extension at 72  °C. After the first round of PCR, a sec-
ond round was conducted to apply barcodes for sample 

identification [79]. For this, PCR cycling conditions were 
as follows: first, an initial denaturation at 95 °C for 4 min 
followed by 18 cycles of 98  °C for 20  s, 60  °C for 15  s, 
and 72  °C for 30 s, and finished with a 3-min extension 
at 72 °C. We performed replicate PCR reactions to con-
trol for errors during the amplification. Further on, the 
PCR products were measured for DNA concentration 
with Quant-IT PicoGreen dsDNA Assay Kit (ThermoFis-
cher Scientific; Waltham, MA, USA) and for quality with 
TapeStation 4200 (Agilent; Santa Clara, CA, USA). The 
samples from each of the PCR replicates were pooled 
equimolarly creating two separate pools and purified 
using NucleoMag NGS Clean-up and Size Select beads 
(Macherey–Nagel; Düren, Germany). Finally, pooled 
samples were sequenced (2 × 300  bp) on the Illumina 
MiSeq platform (San Diego, CA, USA) at the Finnish 
Functional Genomic Center at the University of Turku 
(Turku, Finland).

Sequence processing
All statistical analyses were performed with R (v. 4.11.0; 
R Development Core Team 2021) unless otherwise 
stated. The demultiplexed Illumina sequence data was 

Table 1 (A) Brood size before and after manipulation, (B) hatching date across treatments

(E) enlarged brood size, (R) reduced brood size, (C) control brood size, (COU) unmanipulated control brood size. Brood size was successfully either reduced or enlarged 
by two chicks

(A) Brood size Before manipulation (mean ± SD) After 
manipulation 
(mean ± SD)

Enlarged broods (E) 7.700 ± 1.61 9.650 ± 1.309

Reduced broods (R) 8.375 ± 1.637 6.375 ± 1.637

Control broods (C) 7.565 ± 1.805 7.565 ± 1.805

Unmanipulated broods 7.810 ± 2.112 na

ANOVA F3 = 0.987, p = 0.403

(B) Hatching date Mean ± SD

Enlarged broods (E) 58.60 ± 5.77

Reduced broods (R) 59.83 ± 6.41

Control broods (C) 58.74 ± 5.34

Unmanipulated broods 63.81 ± 4.79

(B) Tukey’s post-hoc for between-group comparisons
Average hatching date

ANOVA F3 = 3.964, p = 0.011*

Contrasts Estimate SE t.ratio p

COU‑C 5.070 1.70 2.983 0.019*

COU‑E 5.210 1.76 2.961 0.020*

COU‑R 3.976 1.68 2.363 0.092

C‑E 0.139 1.72 0.081 0.100

C‑R − 1.094 1.64 − 0.666 0.910

E‑R − 1.233 1.70 − 0.723 0.888
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first processed with Cutadapt version 2.7 [80] to remove 
locus-specific primers from both R1 and R2 reads. Then, 
the DADA2 pipeline (v. 1.24.0; [81]) was used to filter the 
reads based on quality, merge the paired-end (R1 and R2) 
reads, to define the single DNA sequences i.e., Amplicon 
Sequence Variants (henceforward ASV), and to construct 
a ‘seqtab’. Seqtab is a matrix also known as otutable or 
readtable: ASVs in columns, samples in rows, number 
of reads in each cell, using default parameter settings. 
In total, our seqtab consisted of 6,929,537 high-quality 
reads. Reads were assigned to taxa against the SILVA 
v132 reference database [82] resulting in 8658 ASVs. To 
control for contamination, negative DNA extraction and 
PCR controls were used to identify contaminants (60 
ASVs) using the decontam package (v. 1.12; [83]) and all 
were removed from the dataset. Sequencing runs (rep-
licate PCR’s) were merged using the phyloseq package 
(v. 1.32.0) and non-bacterial sequences (mainly Chloro-
phyta) were removed from the data as they were not of 
interest in this study resulting in a total of 6566 ASVs 
(a total of 4,107,028 high-quality reads in all samples; 
mean per sample: 15,155.085; mean range per sample: 
0–97,264). Singleton reads were removed from the data-
set by the DADA2 pipeline. Data was further analyzed 
with the phyloseq package (v. 1.32.0; [84]), and the micro-
biome package (v. 1.18.0; [85]) and visualized with the 
ggplot2 package (v. 3.3.6; [86]).

The final dataset contained 92 samples from great tit 
nestlings resulting in a total of 3,161,696 reads (mean 
per sample: 34,366.261; mean range per sample 108 
– 189,300 reads), which belonged to 6,505 ASVs. The 
dataset was then rarefied for alpha diversity analyses at 
a depth of 5000, as this was where the rarefaction curves 
plateaued (see Additional file  2). The rarefied dataset 
contained 4,791 ASVs in 88 samples. For beta diversity, 
the unrarefied dataset was used after confirming that the 
beta diversity statistics were quantitatively similar for the 
rarefied and unrarefied datasets. Bacterial relative abun-
dances were summarized at the phylum and genus level 
and plotted based on relative abundance for all phyla 
and genera. A Newick format phylogenetic tree with the 
UPGMA algorithm to cluster treatment groups together 
was used to visualize sample relatedness (see Additional 
file  3) and was constructed using the DECIPHER (v. 
2.24.0; [87]), phangorn (v. 2.8.1; [88]), and visualized with 
ape (v. 5.6-2; [89]), and ggtree (v. 3.4.0; [90]) packages.

Statistical analyses
Nestling body mass
First, to analyze whether brood size manipulation 
affected nestling body mass in the C, E, and R treatment 
groups, we ran two linear mixed-effects models with the 
lme4 package (v. 1.1-29; [91]). In these models we used 

either body mass on day 7 or 14 as the dependent vari-
able and brood size manipulation treatment, hatching 
date, body mass on day 2 post-hatch and original brood 
size as predicting variables. Hatching date is used as a 
predicting variable because it is known to affect nestling 
body mass during the breeding season [92] and there 
were differences in hatching date between the COU and 
other treatment groups (see Table  1). We included the 
interaction between original brood size and brood size 
manipulation treatment in both models as the effect of 
manipulation may depend on the original brood size. For 
example, there could be stronger effect of enlargement in 
already large broods. Nest of origin and nest of rearing 
were used as random intercepts to control for the non-
independence of nestlings sharing the same original or 
foster nests. Here, we did not include the COU group in 
the analysis because we wanted to measure the effects 
of treatment on nestling body mass, and only enlarged, 
reduced or control broods’ nestlings were moved 
between nests.

Second, to analyze whether the actual brood size 
affected nestling body mass, we ran two models where 
we used it as a continuous dependent variable to explain 
body mass either on day 7 or on day 14 post-hatch. 
Hatching date and body mass on day 2 post-hatch were 
used as predicting variables and nest of origin and nest 
of rearing as random intercepts to control for the non-
independency of samples. We included the interaction 
between manipulated brood size and hatching date in the 
models because the effect of brood size may depend on 
the hatching date. For example, hatching date can reflect 
environmental conditions and large broods may perform 
poorly late in the season due to poorer food availability. 
The COU group was initially excluded from this model 
to see which of the two random effects, nest of origin or 
nest of rearing, explained a larger portion of variation 
in the treatment groups. In the COU group, nest of ori-
gin and nest or rearing were the same, which meant we 
could not include both random effects in models where 
all treatment groups were present due to the model fail-
ing to converge. Nest of origin explained more of the 
variation in the first model (see Additional file  4) and 
therefore, we used it in the full models with all treat-
ment groups: C, COU, E and R. In these models, nestling 
body mass either on day 7 and or on day 14 post-hatch 
was used as a dependent variable and manipulated brood 
size as the explanatory variable. Hatching date and body 
mass on day 2 post-hatch were set as predicting variables. 
Nest of rearing was used as a random intercept to control 
for the non-independence of nestlings sharing the same 
foster nests. The significance of factors included in the 
models were tested using the F-test ratios in analysis of 
variance (Type III ANOVA).
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Alpha diversity
For alpha diversity analyses, which measures within-
sample species diversity, we ran two linear mixed-effects 
models with the lme4 package (v. 1.1-29; [91]) to measure 
if either brood size manipulation or manipulated brood 
size as a continuous variable were associated with gut 
microbiome diversity. We used two alpha diversity met-
rics: the Shannon Diversity Index, which measures the 
number of bacterial ASVs and their abundance even-
ness within a sample, and Chao1 Richness, which is an 
estimation of the number of different bacterial ASVs in a 
sample. Both metrics were used to check if alpha diver-
sity results were consistent across different metrics. Each 
diversity index was used as the dependent variable at a 
time and either brood size manipulation treatment or 
manipulated brood size as a predicting variable. In both 
models we included original brood size, weight on day 7 
post-hatch and hatching date as covariates. We included 
interaction between brood size manipulation treatment 
and original brood size as there could be a stronger effect 
of enlargement in initially large broods. We also included 
interaction between manipulated brood size and weight 
on day 7 post-hatch because effect of brood size on 
microbiome may depend on nestling weight. We also 
tested whether alpha diversity predicted weight on day 7 
post-hatch, as weight and gut microbiome diversity have 
been connected in previous studies. In this analysis we 
used weight on day 7 post-hatch as the dependent vari-
able and alpha diversity (Shannon Diversity Index and 
Chao1 Richness), treatment and hatching date as predict-
ing variables and nest of rearing as the random effect. In 
these sets of models, we first excluded the COU group 
to see which of the two random effects, nest of origin or 
nest of rearing, explained a larger proportion of variation 
in the treatment groups. Nest of rearing explained more 
of the variation in this model (see Additional file 4) and 
therefore, we used it in the full model with all treatment 
groups: C, COU, E and R. The significance of factors 
included in the models were tested using the F-test ratios 
in analysis of variance (ANOVA).

Short-term survival
To explore whether alpha diversity associated with sur-
vival to fledging (i.e., short-term survival) and with 
apparent juvenile survival in Autumn 2020 (i.e., mid-
term survival), we used generalized linear models with 
binomial model (v. 1.1-29; lme4 package, [91]), and then 
tested the significance of factors with type 2 ANOVA 
from the car package (v. 3.0-13; [93]). Type 2 ANOVA 
was used because the model did not contain interac-
tion between predicting and there was no order between 
covariates, as they could not be ranked. Survival to 
fledging and recapture in Autumn 2020 were used as 

the binomial response variable (yes–no) in each model. 
Alpha diversity (Shannon Diversity Index and Chao1 
Richness) was the main predicting variable, and weight 
on day 7 post-hatch (same time as sampling the fecal gut 
microbiome), hatching date and manipulated brood size 
were included as covariates in the model. We did not 
include brood size manipulation treatment in the sur-
vival models as not enough birds from each treatment 
group were recorded for fledging and juvenile survival. 
Moreover, we excluded random effects from this model 
as the model failed to converge. 65 nestlings fledged suc-
cessfully, while 8 nestlings were found dead in nest boxes. 
For 15 nestlings we had no fledging record, so these were 
excluded from the survival to fledging analysis. In appar-
ent juvenile survival, 19 birds out of 92 (with data on 
microbiome diversity) were recaptured as juveniles. For 
all analyses, the R package car (v. 3.0-13; [93]) was used 
to test Variance Inflation Factors (VIFs) and the package 
DHARMa (v. 0.4.5; [94]) to test model diagnostics for lin-
ear mixed-effects and generalized linear models.

Beta diversity
For visualizing beta diversity, i.e., the similarity or dis-
similarity between the treatment group gut microbiomes, 
non-metric multidimensional scaling (NMDS) was used 
with three distance matrices: Bray–Curtis [95], weighted 
UniFrac, and unweighted UniFrac [96]. Permutational 
multivariate analysis of variance (PERMANOVA) using 
the Euclidean distance matrix and 9999 permutations 
was tested with the R package vegan (adonis2 function; 
v. 2.6-2; [97]) to investigate if any variables affected to the 
variation in gut microbiome composition. Nest of rearing 
was set as a blocking factor in the PERMANOVA to con-
trol for the non-desirable effects of the repeated sampling 
of foster siblings. The test for homogeneity of multivari-
ate dispersions was used to measure the homogeneity of 
group dispersion values. We used the phyloseq package 
(v. 1.32.0; [84]) to run a differential abundance analysis 
with a significance cut-off p < 0.01 to test the differential 
abundance of ASVs between the treatment groups.

Results
The effects of brood size manipulation on nestling body 
mass
Brood size manipulation did not significantly affect 
nestling body mass on day 7 post-hatch (ANOVA:  F2, 

25.832 = 0.441, p = 0.648; see Additional file  5). Moreo-
ver, there was no significant interaction between brood 
size manipulation and original brood size (ANOVA:  F2, 

24.610 = 0.678, p = 0.517; see Additional file 5). On day 14 
post-hatch, brood size manipulation did not significantly 
affect nestling body mass (ANOVA:  F2, 24.335 = 0.831, 
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p = 0.448; see Additional file  5). However, body mass 
increased with increasing hatching date (ANOVA:  F1 

24.070 = 13.367, p = 0.001; see Additional file 5). Next, we 
did not find any significant associations between manip-
ulated brood size and nestling body mass (ANOVA for 
weight on day 7:  F1, 35.149 = 1.777, p = 0.191; ANOVA for 
weight on day 14:  F1, 29.491 = 2.156, p = 0.153; see Addi-
tional file 6). Nest of origin explained a larger proportion 
of the variation in weight than the nest of rearing on both 
day 7 (nest of origin 41.1% and nest of rearing 24.4%) and 
day 14 (nest of origin 65.5% and nest of rearing 21.9%) 
post-hatch, but this result was not statistically significant 
(Pr > χ2 = 1) (see Additional file 4).

Alpha diversity
As 7-day-old nestlings, most bacterial taxa belonged to 
the phyla Proteobacteria, Firmicutes, and Actinobacte-
ria (Fig. 2).

Brood size manipulation did not significantly influ-
ence alpha diversity (Shannon Diversity Index) 
(ANOVA:  F3, 47.488 = 1.026, p = 0.390, Fig.  3; see Addi-
tional file  7). Moreover, original brood size (ANOVA: 
 F1, 50.269 = 0.388, p = 0.536; see Additional file  7), 
weight on day 7 post-hatch (ANOVA:  F1, 80.551 = 0.003, 

p = 0.959; see Additional file  7), and hatching date 
(ANOVA:  F1, 50.276 = 1.073, p = 0.305; see Additional 
file  7) did not significantly associate with alpha diver-
sity. There was no significant interaction between 
brood size manipulation and original brood size 
(ANOVA:  F3, 48.053 = 0.126, p = 0.944; see Additional 
file  7). Results for Chao1 Richness were quantitatively 
similar: brood size manipulation did not affect alpha 
diversity (ANOVA:  F3, 45.936 = 0.358 p = 0.784, Fig.  3; 
see Additional file 7). Nest of rearing explained a larger 
proportion of the observed variance in alpha diversity 
(27.7%) than nest of origin (10.8%), but the result was 
not statistically significant (Pr > χ2 = 1) (see Additional 
file 4).

Next, we tested whether the manipulated brood size 
as a continuous variable was associated with alpha 
diversity (Shannon Diversity Index), but found no sig-
nificant association (ANOVA:  F1, 63.001 < 0.001, p = 0.984; 
see Additional file  8) in this analysis either. Weight on 
day 7 post-hatch (ANOVA:  F1, 82.840 = 0.015, p = 0.903; 
see Additional file  8) and hatching date (ANOVA:  F1, 

59.734 = 0.137, p = 0.713; see Additional file  8) did not 
correlate with alpha diversity in this model either. There 
was no significant interaction between manipulated 

Fig. 2 Bacterial relative abundances on Phylum level across the four treatment groups. Each bar represents an individual sample. Treatment groups 
are control (C), unmanipulated control (COU), enlarged (E), and reduced (R). N = 88 samples divided into treatment groups as follows: C = 23, 
COU = 21, E = 20, R = 24. Phyla with less that 10% in relative abundance is collapsed into the category “< 10% abundance”
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brood size and weight on day 7 post-hatch (ANOVA:  F1, 

82.702 < 0.000, p = 0.998; see Additional file 8). Results for 
Chao1 Richness were quantitatively similar (ANOVA: 
 F1, 65.064 = 0.246, p = 0.622; see Additional file 8): manip-
ulated brood size did not affect alpha diversity, and 
neither did weight on day 7 post-hatch (ANOVA:  F1 

83.513 = 0.690, p = 0.409; see Additional file 8) nor hatch-
ing date (ANOVA:  F1 57.110 = 1.133, p = 0.292; see Addi-
tional file 8).

Alpha diversity and short/mid-term survival
Next, we explored whether alpha diversity (Shannon 
Diversity Index and Chao1 Richness) contributed to pre-
dicting short/mid-term survival (survival to fledging and 
apparent juvenile survival). Survival to fledging was not 
predicted by alpha diversity (Shannon Diversity Index: 
χ2 = 0.010, df = 1, p = 0.923; see Additional files 9 and 10), 
manipulated brood size (χ2 = 0.090, df = 1, p = 0.764; see 
Additional file 9), weight on day 7 post-hatch (χ2 = 0.388, 
df = 1, p = 0.533; see Additional file  9) or hatching date 
(χ2 = 0.438, df = 1, p = 0.508; see Additional file 9).

Apparent juvenile survival was not significantly asso-
ciated with alpha diversity (Shannon Diversity Index: 
χ2 = 1.916, df = 1, p = 0.166; see Additional file  9 and 
Additional file  10). Moreover, there was no significant 

interaction between alpha diversity and manipulated 
brood size (χ2 = 1.268, df = 1, p = 0.260; see Additional 
file  9). However, apparent juvenile survival was nega-
tively associated with hatching date (χ2 = 4.654, df = 1, 
p = 0.031; see Additional file  9). Additional analyses to 
check for the consistency of results were tested the fol-
lowing way: survival to fledging with nestlings from the 
COU group removed and apparent juvenile survival 
without the nestlings with no recorded survival for fledg-
ing (see methods). These results were quantitatively simi-
lar as in the whole dataset for both Shannon Diversity 
Index (survival to fledging: χ2 = 2.285, df = 1, p = 0.131; 
apparent juvenile survival: χ2 = 1.515, df = 1, p = 0.218; 
see Additional file  11) and Chao1 Richness (survival to 
fledging: χ2 = 0.665, df = 1, p = 0.415; apparent juve-
nile survival: χ2 = 2.654, df = 1, p = 0.103; see Additional 
file 11).

Beta diversity
Non-metric multidimensional scaling (NMDS) using 
weighted and unweighted UniFrac and Bray–Curtis dis-
similarity did not show clear clustering of samples based 
on brood size manipulation treatment (see Additional 
file  3). The test for homogeneity of multivariate disper-
sions supported the visual assessment of the NMDS 
 (Betadispersion9999 permutations:  F3, 0.069 = 0.650, p < 0.001; 
see Additional file  12). Pairwise PERMANOVA further 
indicated that the treatment (PERMANOVA:  R2 = 0.061, 
F = 1.951, p = 0.278; see Additional file  12), weight on 
day 7 post-hatch (PERMANOVA:  R2 = 0.015, F = 1.387, 
p = 0.091) or hatching date (PERMANOVA:  R2 = 0.0232, 
F = 2.214, p = 0.993) did not significantly contribute to 
the variation in gut microbiome composition between 
the treatment groups. Differential analysis of ASV abun-
dance between the treatment groups showed that there is 
variation in taxa abundance. E group showed higher taxa 
abundance when compared to COU and C groups and 
was slightly higher than the R group. C and COU groups 
were generally lower in taxa abundance than R and E 
groups, and COU group showed lower abundance than 
the other groups in each comparison (see Additional 
file 13).

Discussion
In this study, we investigated the associations between 
great tit nestling gut microbiome, brood size, and nestling 
body mass by experimentally manipulating wild great tit 
broods to either reduce or enlarge the original brood size. 
The results show that even though there was individual 
variation in the nestling gut microbiome (Fig.  2), brood 
size did not significantly contribute to gut microbiome 
diversity. Neither did gut microbiome diversity explain 

Fig. 3 The gut microbiome alpha diversity of 7‑day‑old great tit 
nestlings across the four treatment groups visualized with two 
diversity metrics: A Shannon Diversity Index and B Chao1 Richness. 
The black dots represent each observation within a treatment group. 
The whiskers represent 95% confidence intervals. Treatment groups 
are control (C), unmanipulated control (COU), enlarged (E), and 
reduced (R). N = 88 samples divided into treatment groups as follows: 
C = 23, COU = 21, E = 20, R = 24
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short-term (survival to nestling) nor mid-term (apparent 
juvenile) survival. Body mass was also not significantly 
affected by brood size manipulation. The COU group that 
functioned as a control for moving and handling effects, 
did not differ in this respect from the other groups. This 
suggests that human contact or handling nestlings 2 days 
post-hatch did not influence nestling gut microbiome 
or body mass. The partial cross-fostering design ena-
bled us to disentangle the relative contributions of rear-
ing environment (i.e., parents, nest and nestmates) from 
genetic, prenatal such as maternal allocation to egg, and 
early post-natal effects such as feeding up to day 2. Nest 
of rearing seemed to explain more of the variation in 
nestling gut microbiome diversity than the nest of origin 
(although not statistically significant), which follows pre-
vious studies. Contrastingly, nest of origin seemed to be a 
stronger contributor than the nest of rearing on nestling 
body mass on day 7 and day 14 post-hatch. This result 
was also not statistically significant.

Brood size manipulation and nestling body mass
First, we explored whether brood size was associated 
with nestling body mass, as such changes may explain the 
underlying patterns in gut microbiome [52]. Against our 
hypothesis, we found no significant association between 
nestling body mass and brood size: neither reduction nor 
enlargement of the broods resulted in significant body 
mass differences in the nestlings on day 7 and day 14 
post-hatch. While the result is supported by some stud-
ies in which associations between nestling body mass and 
brood size have been tested [61, 98], the majority of the 
literature shows that brood size negatively correlates with 
nestling body mass: in larger broods nestlings are gener-
ally of lower mass [52, 53, 57, 67, 99–104].

There are a few possible explanations why brood size 
manipulation did not affect nestling body mass. Firstly, if 
environmental conditions were good, parents may have 
been able to provide enough food even for the enlarged 
nests and thus, variance in brood size may not result in 
differences in nestling body mass between reduced and 
enlarged nests. In that case the number of nestlings 
transferred between enlarged and reduced nests should 
probably have been larger to create differences in nestling 
body mass between the two treatments. Still, we think 
that the decision to transfer + 2/− 2 was reasonable since 
it was based on extensive evidence from previous stud-
ies [103]. Secondly, it could be that the enlarged brood 
size negatively influences some other physiological traits 
while body mass was retained at the expense of these 
other traits e.g., immune system functioning [105, 106]. 
Moreover, our analysis showed that hatching date had a 
significant effect on nestling body mass: nestlings that 
hatched later in the season were of lower weight. This 

could be a result of changes in the food items that great 
tits use, changes in temperature conditions or in paren-
tal investment during the breeding season. As the season 
progresses, the abundance of insect taxa varies, and this 
can result in changes in nutrient rich food [103, 107]. For 
example, great tits can select certain lepidopteran larvae 
that vary in their abundance during the great tit breeding 
season [108]. Thirdly, it could be that the change in brood 
size was influencing the parents’ condition instead of 
the nestlings [109, 110]. In enlarged broods, parents are 
required to forage more which can lead to higher energy 
expenditure and increased stress levels in parents [72, 73, 
109].

Brood size manipulation and gut microbiome
We found large inter-individual differences in gut micro-
biome diversity, yet this variation was not explained 
by brood size or nestling body mass. It is possible that 
brood size did not result in differences in food intake. 
For example, parents were likely able to provide an 
equivalent amount of food, given that body mass was 
not significantly affected by the brood size manipula-
tion. Therefore, brood size manipulation did not affect 
gut microbiome diversity through differences in nutrient 
uptake. Alternatively, in this study, fecal sampling took 
place 5 days after the initial brood size manipulation (day 
2 post-hatch). It could be that sampling on a later date or 
at multiple timepoints [61, 111] would have led to differ-
ent results. Firstly, the time interval may not have been 
long enough to detect effects of the brood size manipula-
tion. Secondly, it has been shown in previous studies that 
the nestling gut microbiome undergoes profound shifts 
at the nestling stage: overall gut microbiome diversity 
decreases but relative abundance in some taxa increases 
[52]. We suggest that fecal samples could be collected on 
multiple days post-hatch to understand the potential day 
to day changes in the nestling gut microbiome.

Our results suggest that the variance in gut micro-
biome is a result of other factors than those linked to 
brood size. Firstly, one of these factors could be diet (i.e., 
food quality) which has gained attention in gut microbi-
ome studies during the past years [25, 27, 112–115]. The 
overall diversity in gut microbiome could be explained 
by adaptive phenotypic plasticity because it is sensi-
tive to changes in the environment e.g., changes in diet 
[116, 117]. The food provided by the parents can vary 
between broods in different environments [118], and this 
variation in diet can lead to differences in gut microbi-
ome diversity [114–119]. For example, abundance in cer-
tain dietary items such as insects or larvae can result in 
lower gut microbiome diversity than other dietary items 
[113–116]. As great tits have been reported to adapt their 
diet along the breeding season due to changes in insect 
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taxa frequency [103, 107] this could affect the between-
nestling and between-nest gut microbiome diversity. 
However, using wild bird populations in gut microbiome 
studies limits the ability to control the consumed dietary 
items because parents may use variable food resources 
and there can be variance in dietary between sexes and 
even individuals. Visual assessment of dietary items [116] 
and metabarcoding could be of use here as they enable 
the identification of food items on genus and even spe-
cies level from e.g., fecal samples [119].

Secondly, breeding habitat may lead to differences 
in gut microbiome diversity [120]: adult birds living in 
deciduous forests have shown to harbor different gut 
microbiome diversity than their counterparts living in 
open forested hay meadows. Here, we used a cross-fos-
tering design to study if the rearing environment contrib-
uted to the variation in gut microbiome diversity: Our 
study indicated that the nest of rearing seemed to explain 
more of the gut microbiome variation than the nest of 
origin (although not significant), which follows some pre-
vious results [43, 44, 52]. For example, a study with great 
and blue tit (Cyanistes caerulaeus) nestlings showed that 
the nest of rearing contributed more to the gut microbi-
ome than the nest of origin [43], and another study with 
the brown-headed cowbird (Molothrus ater) concluded 
that the sampling locality had a significant contribution 
to the gut microbiome [44]. Teyssier et al. [52] conducted 
cross-fostering at day 8 post-hatch in great tits and found 
that the nest of rearing influenced the gut microbiome 
more than the nest of origin. Additionally, parents can 
pass down their bill and feather microbiome through 
vertical transmission, which could influence nestling gut 
microbiome [20].

Results from beta diversity analysis were similar to 
that of alpha diversity: brood size manipulation did not 
contribute to the variation in gut microbiome composi-
tion. Overall, variation in gut microbiome composition 
could be a result of different genetic and environmental 
contributors. Firstly, great tit nestling gut microbiome 
composition could be explained by underlying genetic 
effects that we did not measure in this study. Phylosym-
biosis i.e., the matching of gut microbiome composition 
to host genetic structure, could be explained by underly-
ing genetics that may translate into physiological differ-
ences that affect the gut microbiome e.g., founder effects 
or genetic drift [121]. Davies et al. [14] found that MHC 
genes correlate with gut microbiome composition: the 
expression of specific alleles in the MHC genes was con-
nected to the abundance of specific bacterial taxa such 
as Lactobacillales and Bacteroidales that influenced host 
health. In a study by Benskin et  al. [41] captive zebra 
finches (Taeniopygia guttata) showed significant varia-
tion in gut microbiome composition between individuals 

even though their diet and housing conditions were 
standardized. The study suggested that individual home-
ostatic mechanisms linking to naturally occurring dif-
ferences in individual gut microbiome could be why gut 
microbiome composition varied even with standardized 
housing conditions [41]. Secondly, gut microbiome com-
position could have been affected by the same environ-
mental effects that may have linked to the variation in 
gut microbiome diversity: diet and feeding behavior [115, 
116].

Differential analysis of ASV abundance showed vari-
ation in differential abundance of taxa between the 
treatment groups. However, several ASVs were not tax-
onomically assigned beyond family level making it diffi-
cult to draw conclusions about the significance of these 
results. All treatment groups had taxa belonging to the 
order Firmicutes, Proteobacteria and Actinobacteria, 
which was to be expected because they are usually the 
most core phyla in passerine gut microbiomes [33]. Nest-
lings belonging to E, R or C group showed higher taxa 
abundance than the COU group in each comparison. 
This result could be a result of the COU nestlings gen-
erally hatching later in the season and potentially having 
a less diverse diet [103, 107]. Of the E, R and C groups, 
C group was less abundant than E and R groups. Both E 
and R group showed high taxa abundance, which is inter-
esting because we hypothesized that nestlings belonging 
to the E group would potentially experience less parental 
investment per nestling and have lower gut microbiome 
diversity and therefore, be less abundant [56, 57, 67, 68]. 
We did not observe differential abundance in e.g., the 
order Lactobacillales which would have been of interest, 
because the order hosts taxa that are beneficial for gut 
microbiome health [14, 62]. The genus Staphylococcus 
was differentially abundant in the E group, but not in the 
other groups. Staphylococcus is a gram-positive genus of 
bacteria and known to cause infections in its host species 
[122]. Curiously, the COU group was differentially abun-
dant in the genus Dietzia, which is a human pathogen 
[123].

Gut microbiome and short-term and mid-term survival
Our results showed that gut microbiome diversity 
and brood size were not significantly associated with 
short-term (survival to fledging) or mid-term (appar-
ent juvenile) survival. However, while a more diverse 
gut microbiome is considered a possible indicator of a 
healthy gut microbiome, the effects of the gut microbi-
ome on the host health may often be more complex and 
related to specific taxa [9, 10]. For example, Worsley et al. 
[13] did not find a correlation between body condition 
and gut microbiome diversity, yet they found that spe-
cific taxa in the gut microbiome linked with individual 



Page 12 of 16Liukkonen et al. Animal Microbiome            (2023) 5:19 

body condition and survival. Not only environment, but 
also genetic background of the individual may contrib-
ute to gut microbiome and survival. In a study by Davies 
et al. [14], Ase-ua4 allele of the MHC genes was linked to 
lower gut microbiome diversity and it was suspected that 
the variation in the MHC genes could affect the sensitiv-
ity to pathogens that could lead to variation in gut micro-
biome diversity and eventually, host survival.

To gain a better understanding of gut microbiome 
diversity and the contribution of different taxa to host 
survival, functional analyses of the gut microbiome 
should be included in gut microbiome studies. Differ-
ent bacterial taxa can have similar functions in the gut 
microbiome [5, 124] and therefore, the absence of some 
taxa may be covered by other functionally similar taxa, 
resulting in a gut microbiome that is functionally more 
stable [125]. Similarity in functions may also contribute 
to host’s local adaptation e.g., to the changes in the host’s 
early-life environment [124]: changes in brood size or 
dietary items could result in variation in the gut micro-
biome diversity, yet there may be no effects on host body 
condition.

The lack of association between brood size, nestling size 
and survival contrasts with previous studies, but it should 
be noted that the majority of previous studies have been 
done with adult birds and not nestlings. Because nestling 
gut microbiome is still quite flexible compared to that of 
the adults [20], it is possible that our experiment did not 
result in a strong enough effect on the gut microbiome. In 
future studies, it would be important to study the parents 
as well as it could be more likely to find an association 
between adult microbiome and fitness than with nestling 
gut microbiome and survival. Also, our sample size in the 
survival analyses was small, and it is hard to determine 
if the result was affected by the sample size. Firstly, nest-
ling survival is often found to correlate with brood size 
and more specifically, with fledging mass and in particu-
lar, the ability to forage for food [61, 126]. Intra-brood 
competition may explain survival to fledging, as compe-
tition between nestlings can limit food availability and 
thus, leading to lower nestling body condition [68, 127]. 
A study with blackbirds (Turdus merula) showed that 
nestling body mass explained juvenile survival [128], and 
similar results have been shown with great tits and col-
lared flycatchers (Ficedula albicollis; [31]). Contrastingly, 
Ringsby et  al. [129] observed that in house sparrows 
(Passer domesticus) juvenile survival was independent of 
nestling mass and brood size. Moreover, natal body mass 
is often positively correlated with survival to fledging and 
juvenile survival as heavier nestlings are more likely to be 
recruited [92, 130, 131], yet we failed to demonstrate this 
in our study. Hatching date is also often positively corre-
lated with fledging success [132] yet we did not find this 

association in our study, but instead found a significant 
association between hatching date and apparent juvenile 
survival.

Conclusions
Offspring condition can be affected by the early-life envi-
ronment and early-life gut microbiome, thus highlight-
ing the importance of understanding how changes in the 
rearing environment affect individual body mass and sur-
vival. Even though our results showed between-individ-
ual variation in nestling gut microbiome diversity, we did 
not find a significant link between brood size and nestling 
gut microbiome. Moreover, we did not find a significant 
association between nestling gut microbiome diversity 
and short-term or mid-term survival. This suggests that 
other environmental factors (e.g., diet quality) may con-
tribute more to variation in nestling gut microbiome. 
Further research is needed to uncover the environmen-
tal factors that contribute to nestling gut microbiome in 
wild bird populations, and how gut microbiome may be 
linked to nestling survival. Gut microbiome can adapt 
faster to environmental changes than the host, which 
makes it important to understand the causes of inter-
individual variation in microbiome, and how variation in 
microbiome possibly mediate adaptation to environmen-
tal changes.
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