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Abstract 

Background Dogs—whether pets, rural, or stray—exhibit distinct living styles that influence their fecal microbiota 
and resistomes, yet these dynamics remain underexplored. This study aimed to analyze and compare the fecal micro-
biota and resistomes of three groups of dogs (37 pets, 20 rural, and 25 stray dogs) in Shanghai, China.

Results Metagenomic analysis revealed substantial differences in fecal microbial composition and metabolic activi-
ties among the dog groups. Pet dogs displayed the lowest microbial diversity. Using Shapley Additive Explanations 
(SHAP), an interpretable machine learning approach, Ligilactobacillus emerged as the most diverse genus, with sig-
nificantly higher SHAP values in stray dogs, suggesting enhanced adaptability to more variable and less controlled 
environments. Across all samples, 587 antibiotic resistance genes (ARGs) were identified, conferring resistance to 14 
antibiotic classes. A striking observation was the detection of mcr-1 in one pet dog, indicating a potential public 
health risk. The floR gene was identified as a key differentiator in resistance profiles, particularly in pet and rural dogs, 
likely due to antibiotic exposure in their environments.

Conclusion This study provides the first comprehensive assessment of fecal microbiota and resistome variations 
among dogs with different lifestyles, revealing a less resilient microbiome and heightened antimicrobial resistance 
in pet dogs, which could have public health implications.
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Graphical Abstract

Background
It is estimated that infections caused by antibiotic-resist-
ant bacteria (ARB) have been associated with approxi-
mately 4.95 million human deaths in 2019 [1]. This 
alarming global burden prompted the World Health 
Organization (WHO) to recently prioritize combating 
antimicrobial resistance (AMR) as one of the most urgent 
human health issues [2]. ARB can acquire and transmit 
antibiotic resistance genes (ARGs) from various inter-
faces, such as animals and the environment, via horizon-
tal gene transfer (HGT) [3, 4].

Studies have shown that food animals, wildlife, and 
companion animals serve as important reservoirs of 
ARGs [5–7]. However, most studies focus on food ani-
mals, as they account for two-thirds of total antibiotic 
use and can disseminate ARGs through the food chain 
[4, 5, 8]. Similar to food-producing animals, compan-
ion animals are also administered antimicrobial agents, 
including the highest priority critically important anti-
microbials (HPCIA), like fluoroquinolones and third-
generation cephalosporins[9]. Additionally, they often 
have close interactions with humans, engaging in 
close-contact behaviors such as kissing. Despite this, 
fewer studies have focused on AMR risk assessment 
in companion animals, even though critical ARGs and 
ARBs such as mcr-1, blaNDM-1, and Methicillin-resistant 
Staphylococcus aureus (MRSA) have been identified in 

them [10–12]. Yang et al. found that ARG abundance in 
pet cats was higher than that in humans, and assessed 
the ARG risks in these animals [7]. They proposed that 
cat ownership could shape the resistome of the own-
er’s feces, although the cat’s resistance risk remains 
relatively low. Zhao et  al. observed a strong correla-
tion between macrolide ARGs in the fecal microbiota 
of dogs and humans, but emphasized only the key role 
of close relationships in this process without quantita-
tively assessing the risk of antibiotic resistance trans-
mission [13]. These studies consider the owner and 
pet as a whole, overlooking the independent sources of 
ARGs in humans and pets. Recently, a cross-sectional 
study suggested that pets and humans might be two 
separate reservoirs, acquiring ARBs and ARGs from 
distinct sources [14], In this study, among only 9 of 299 
families, both dogs and their owners carried blaCTX-M 
positive E. coli simultaneously, with only 1 of 9 fami-
lies confirmed to have the same strain. This indicates 
that the occurrence of resistance between owners and 
dogs should not be solely attributed to close relation-
ships, as it may be coincidental, although it can facili-
tate the exchange of resistance. When considering 
animals and hosts separately, there is currently a lack of 
completely understanding regarding the risk of ARGs’ 
tranferabiltiy and pathogenicity. However, these studies 
primarily focus on companion animals as pets, lacking 
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comparisons with animals in other lifestyle contexts. 
The risk of ARG transmission in companion animals 
may differ depending on lifestyle, and understanding 
how various lifestyles impact fecal resistance risk can 
help clarify the role that close contact with humans 
plays in this process.

Therefore, we selected pet, stray, and rural dogs as 
research subjects. These dogs have completely different 
living conditions but are closely linked to human life. Pet 
dogs are fully integrated into human life with close, fre-
quent contact, while stray dogs live independently, often 
relying on urban environments for survival with occa-
sional indirect human interactions. Rural dogs fall some-
where in between, with moderate contact, often roaming 
freely but remaining associated with households. We 
employed a metagenomic approach to investigate the 
effects of the three lifestyles on the dog fecal microbi-
ome and resistome. Our goal is to provide insights into 
the fecal microbiomes and resistomes of the three dog 
groups, while also assessing the risk of ARGs transmis-
sion among these groups.

Methods
Study design and sample collection
The three types of dogs included in this study have dis-
tinct characteristics: both pet and stray dogs live in urban 
areas, while rural dogs come from countryside regions 
[15]. Pet dogs have owners and live indoors, only allowed 
outside when on a leash, and their diet consists exclu-
sively of commercial dog food. Stray dogs are unowned 
and roam freely outdoors in the city, with an unknown 
and highly variable diet. Rural dogs are kept by their 
owners to guard homes, with outdoor kennels in open 
yards, no leash restrictions, and free access to outdoor 
areas; they are typically fed their owners’ leftovers. The 
pet dogs are kept for companionship and have lived with 
their owners for an extended period, followed by the 
rural dogs, while stray dogs only have occasional contact 
with humans.

In this study, we selected pet and rural dogs based on 
the following criteria: (1) no current acute illness; (2) no 
recent antibiotic use within the past 3 months. Our sur-
vey included data from 85 households, consisting of 55 
urban and 30 rural families. We successfully obtained 57 
anal swab samples from these households, including 37 
from pet dogs and 20 from rural dogs. Additionally, 25 
samples were collected from 40 stray dogs (Table S1).

Informed consent was obtained from all guardians of 
pet dogs and rural dogs participating in the study, and 
stray dog samples were collected with the local govern-
ment’s informed consent.

Samples were collected during November and Decem-
ber 2021. Samples from pet dogs were collected with 

the assistance of staff from a veterinary hospital. Sam-
ples from rural dogs were collected with the assistance 
from the local Animal Disease Prevention and Control 
Center staff. Stray dog samples were collected after the 
dogs were anesthetized, with anesthesia administered by 
the local public security department. The samples were 
stored in preservative solution (LifeGuard Soil Preserva-
tion Kit (catalog no: 12868–1000) from Qiagen) and tem-
porarily placed in an insulated box containing ice packs. 
They were then transported to the laboratory within two 
hours and stored at − 80 °C.

DNA extraction and metagenomic sequencing
All samples were submitted to the Personal Biotechnol-
ogy (Shanghai, China) for DNA extraction and metagen-
omic sequencing. Sequencing was performed using the 
IlluminaNovaSeq6000 high-throughput sequencing plat-
form with 2 × 150  bp PE reads according to the Whole 
Genome Shotgun (WGS) strategy.

Total microbial genomic DNA were extracted using the 
OMEGA Mag-Bind Soil DNA Kit (M5635-02) (Omega 
Bio-Tek, Norcross, GA, USA) following the manufac-
turer’s instructions, and stored at -20  °C before further 
assessment. The quantity and quality of extracted DNA 
were measured using a Qubit™ 4 Fluorometer, (WiFi: 
Q33238, Qubit™ Assay Tubes: Q32856; Qubit™ 1X 
dsDNA HS Assay Kit: Q33231) (Invitrogen, USA) and 
agarose gel electrophoresis. Genomic DNA was used 
to construct metagenome shotgun sequencing libraries 
with insert sizes of 400 bp by using the Illumina TruSeq 
Nano DNA LT Library Preparation Kit. Each library was 
sequenced by the Illumina NovaSeq platform (Illumina, 
USA) with a PE150 strategy at Personal Biotechnology 
Co., Ltd. (Shanghai, China).

Metagenome assembling and genomic bins
For comparability, all samples used in this study were 
processed using the same pipeline [16]. Quality con-
trol was conducted using Trimmomatic v0.39 [17]. Host 
(dog) genomic sequences were removed by alignment 
against host genomes using BWA-0.7.17[18] and SAM-
tools v1.18 [19]. The reference genomes for the host was 
Canis familiaris (GCA_000002285.4). The metagenome 
module of SPAdes v3.15.5 [20] was used for assembly. 
Qualified reads were submitted to MetaPhlAn2 [21] and 
EukDetect [22] for taxonomic profiling. All genomes 
were annotated using MetaGeneMark v3.38. MetaWrap 
v1.3 [23] including MetaBAT2, Maxbin2, Concoct, was 
used to bin genomes from contigs, and CheckM v1.1.6 
[24] was performed to assess bin quality. The taxonomy 
of all bins was determined using GTDB-tk v2.3 with r214 
database [25]. Metagenome assembly genomes were 
dereplicated using dRep v3.0.0 [26] with parameters set 
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to 99% ANI, > 50% completion, and < 10% contamination. 
After calling and aligning 120 bacterial conserved pro-
teins from all dereplicated bins using GTDB-tk, phyloge-
netic analysis was performed on the filtered high-quality 
metagenome assembly genomes with IQ-TREE v2.0.6 
[27].

Identification and analysis of ARGs, mobile genetic 
elements (MGEs), and virulence factors (VFs)
ARGs and MGEs were identified by calling genes from 
contigs using MetaGeneMark, followed by BLAST, 
searching with 80% identity and 70% coverage for data fil-
tering. ARG identification, classification, and mechanism 
was referenced to the most recent version of ResFinder 
(updated in April 2023) [28]. MGE identification was 
referenced against MobileOG (updated in August 2022) 
[29], ISFinder (updated in October 2020) [30] and ICE-
berg 2.0 [31]. VFs identification was referenced against 
VFDB [32].

Assessment on risk of antimicrobial resistance 
and pathogenicity (RARP)
We followed and modified the MetaCompare pipeline 
[33] (https:// github. com/ minoh 0201/ MetaC ompare) to 
assess antibiotic resistance and pathogenic risk of fecal 
microbiota in dogs. This was done by assessing the rela-
tive abundance of ARGs (proportions of ARG-associated 
contigs), ARGs with potential mobility risk (proportions 
of ARG-MGE-associated contigs) andVFGs with poten-
tial mobility risk (proportions of VFGs-MGE-associated 
contigs). Euclidean distances were calculated for the 
three risk factors to obtain a score for each.

Statistical analysis and graphing
R and Python were used for microbial and ARG com-
position analyses, β-diversity analysis (PCoA), and per-
mutation multivariate analysis (Adonis) to determine 
sample differences. Microeco packages [34] were used 
for Linear discriminant analysis Effect Size (LEfSe) and 
mapping. Significant box plots were generated using the 
ggpubr package and ggplot2 package [35]. Kruskal–Wal-
lis and Mann–Whitney tests were performed using SPSS 
26.0 to compare differences in the non-normal data and 
corrected using the Bonferroni method. A P value < 0.05 
was considered statistically significant. The bacterial 
abundance is presented in the form of mean ± standard 
deviation. Venn diagrams and bar graphs were gener-
ated by the ggplot2 package and Prism 9.0.0. Correlation 
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network analysis of bacteria and ARGs was conducted 
to infer potential hosts of ARGs. The Spearman’s hier-
archical correlation coefficients calculated using Python 
were subjected to construct the correlation network with 
|ρ|> 0.8 and P value < 0.01. The network was visualized 
using Gephi-0.10.1. Phylogenetic trees were produced 
using iTOL (https:// itol. embl. de/). Antibiotic resistance 
and pathogenic risk scores were calculated using Python. 
The calculation formulas in Python are as follows:

df[’distance’] = df.apply(lambda row: math.sqrt((0.01—
row[’fARG’])**2 + (0.01—row[’fARG_MGE’])**2 + (0.01—
row[’fVFG_MGE’])**2), axis = 1).

df[’score’] = df.apply(lambda row: 1.0 / ((2 + math.
log10(row[’distance’]))**2), axis = 1).

Machine learning models for classifying bacterial species 
and ARGs among three groups of dogs
To validate the differences in microbial communities 
and ARGs among the three dog groups, we employed an 
interpretable machine learning method, SHappley Addi-
tive exPlanations (SHAP). SHAP values reinforced the 
differences identified by differential abundance analy-
sis from LEfSe and Kruskal–Wallis and Mann–Whit-
ney tests mentioned above. In brief, we applied several 
machine learning methods including Random Forest 
Classifier (RFC), Support Vector Machine (SVM) and 
Decision Tree (DT), using the ScikitLearn v1.5.1 (https:// 
scikit- learn. org/) to predict the most distinct groups of 
bacteria or ARGs based on the abundance data of taxa 
and ARGs. Five-fold nested Cross-Validation (CV) was 
used for hyperparameter optimization. Model perfor-
mance was assessed using accuracy, F1 score, precision, 

recall and Area Under the Curve (AUC) between folds. 
SHAP values were utilized to interpret predictions from 
all methods using the shap.TreeExplainer function of 
SHAP v0.46[36]. Feature contributions were extracted 
from each fold of the nested CV and consolidated into a 
consensus.

Results
Composition of fecal microbial communities in the three 
dog groups
According to MetaPhlAn2’s analysis, sequenced reads 
from all samples were assigned to 12 different phyla 
at the phylum level. Bacillota had the highest abun-
dance (42.3% ± 26.3%) among all samples, followed 
by Pseudomonadota (17.3% ± 21.4%), Bacteroidota 

https://github.com/minoh0201/MetaCompare
https://itol.embl.de/
https://scikit-learn.org/
https://scikit-learn.org/
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Fig. 1 Comparison of fecal microbiome in three dog groups. A Fecal bacterial composition at the phylum level. B Venn diagram of the fecal 
microbiota at the genus level. C Principal Coordinate Analysis (PCoA) of the fecal microbiota composition at the genus level based on the Bray–
Curtis distance matrix. D The α-diversity (Shannon index), the error bars inside denote the mean with SD. E The LEfSe analysis of the fecal microbiota 
in three groups (LDA > 4). F Differences in fungal abundance among the three groups. Abbreviations: LEfSe, Linear discriminant analysis Effect Size
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(14.5% ± 16.5%), and Actinomycetota (12.5% ± 13.4%) (Fig.
S1A). The fecal bacterial composition at the phylum level 
showed considerable within-group variation. (Fig.  1A). 
Some low-abundance phyla, such as Spirochaetota, Syn-
ergistota, and Verrucomicrobiota, were detected exclu-
sively in samples from stray dogs, while Acidobacteriota 
was found only in samples from rural dogs. The Archaeal 
phylum Nitrososphaerota was also identified in stray 
dogs, albeit with very low relative abundance (Table S2). 
The fecal bacterial composition of stray dogs and pet 
dogs was similar at the phylum level. Bacillota was the 
dominant bacterial phylum, accounting for 54.6% ± 22.0% 
in stray dogs and 47.1% ± 26.3% in pet dogs, significantly 
higher than in rural dogs (18.2% ± 18.6%) (P < 0.001). 
However, Pseudomonadota (41.4% ± 25.0%) were more 
abundant in rural dogs than in stray dogs (10.4% ± 9.7%) 
and pet dogs (9.4% ± 14.0%) (P < 0.05, Fig.S1B). In sum-
mary, Actinomycetota, Bacteroidota, Bacillota, and 
Pseudomonadota are the major divisions of the fecal 
microbiota in dogs, collectively accounting for approxi-
mately 90% or more of all bacterial phyla. At the class 
level, Actinomycetota is dominated by Actinomycetia and 
Coriobacteriia; Bacteroidota by Bacteroidia; Bacillota 
by Bacilli and Clostridia; and Pseudomonadota by Gam-
maproteobacteria (Table S3).

At the genus level, we identified a total of 498 genera, 
showing the number of unique and shared genera for 
each group (Fig. 1B, Table S4). We used Principal Coordi-
nate Analysis (PCoA) to assess the similarity of the fecal 
microbial composition among dogs with different life-
styles (Fig.  1C). Rural dogs and pet dogs exhibited high 
similarity, whereas stray dogs shows a minimal overlap 
between the two groups, suggesting a potential differ-
ence in their composition. and displayed considerable 
within-group variability. The α-diversity indices (Fig. 1D), 
including observed genera and the Shannon index, 
showed that the diversity of fecal microbiota in pet dogs 
was lower than in rural dogs and stray dogs (P < 0.01), 
with no significant difference between rural and stray 
dogs (P = 0.95). We performed LEfSe analysis on micro-
bial abundance profiles to identify the taxa associated 
with specific lifestyles (Fig. 1E). Across all dogs, 18 char-
acteristic species (LDA > 4.0) were found: stray dogs had 

the most (n = 9), followed by rural dogs (n = 6) and pet 
dogs (n = 3).

Three fungi phyla were found in the dog feces: Asco-
mycota, Basidiomycota, and Mucoromycota. Nematoda 
was identified from only one stray dog feces (Fig.  1F, 
Table  S5). Ascomycota and Basidiomycota were found 
in all dog groups, while Mucoromycota was found only 
in stray dogs and rural dogs. Comparing the eukaryotic 
abundances across the three dog groups, we found that 
stray dogs and rural dogs had higher eukaryotic abun-
dance than pet dogs (P < 0.001).

Abundant ARGs in the fecal microbiota
A total of 587 ARGs were detected in the fecal microbi-
ome and categorized into eight antimicrobial resistance 
mechanisms (Fig. 2A). The majority of ARGs were asso-
ciated with target protection. PCoA analysis revealed 
that the abundance of fecal ARGs was more similar in 
rural and pet dogs, but distinct from that in stray dogs 
(Fig.  2B). The abundance of ARGs varied considerably 
among individuals within the stray dog group, mirroring 
the fecal microbial composition patterns across the three 
dog groups.

Rural dogs carried the highest number of ARGs 
(117 ± 66), followed by stray dogs (106 ± 30). Pet dogs 
had the lowest number (44 ± 20) (Fig.S2A). Despite the 
higher numbers of ARGs in stray and rural dogs, the rela-
tive abundance of all ARGs (represented by RPKM) aver-
aged across stray dogs and rural dogs was lower than in 
pet dogs (P < 0.001, Fig.S2B). The abundance of resistance 
genes for aminoglycosides, beta-lactams, macrolides, 
tetracyclines, and multi-drug resistance in the feces of 
pet dogs was significantly higher than in the other two 
groups (P < 0.01, Fig.  2C). However, the distribution of 
specific ARGs varied among the three dog groups. ARGs 
conferring resistance to streptozotocin A was only found 
in stray dogs, while fosfomycin and glycopeptide resist-
ance genes were found almost exclusively in rural dogs. 
Additionally, ARGs conferring resistance to polymyxin, 
such as mcr-1, mcr-7, and mcr-10, were found in both pet 
and rural dogs (Fig.  2C). An unexpectedly high relative 
abundance (RPKM = 165.12) of mcr-1 was observed in 
one pet dog (M051) (Table S6).

Fig. 2 Comparison of ARGs among three dog groups. A Classification of ARGs referring to mechanisms. B Principal coordinate analysis (PCoA) 
based on Bray–Curtis distance in the composition of ARGs. C Comparison of relative abundance across antibiotic classes for all ARGs. D 
Co-occurrence network analysis of fecal microbial ARGs in dogs, with Spearman’s correlation coefficient |ρ|> 0.8 and significant P < 0.01 correlation. 
The size of each node is proportional to the number of connections. E Co-occurrence network analysis of fecal microbial ARGs and genera 
in dogs, with Spearman’s correlation coefficient |ρ|> 0.8 and significant P < 0.01 correlation. The size of each node is proportional to the number 
of connections

(See figure on next page.)
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Co-occurrence network analyses of ARGs revealed 
high correlations among multiple classes of antibiotics 
and bacteria (Spearman’s correlation coefficient ρ > 0.8, 
P < 0.01; Fig. 2D and Fig. 2E). Some ARGs, such as ami-
noglycosides resistance genes, cmlA1, blaLAP-2, sul1, sul3, 
dfrA, tet(A), oqxA, oqxB, and qnrS1, showed high cor-
relations with multiple ARGs. Psychrobacter, Rutheni-
bacterium, Lactobacillus, Ruoffia, and Jeotgalibaca were 
highly correlated with at least three ARGs. The blaLAP-2 
and catB8 genes each exhibit a high correlation with four 
different ARGs. Additionally, six aminoglycoside resist-
ance genes (aph(3’)-VIa, ant(3’’)-Ii-aac(6’)-IId, aadA17, 
aph(2’’)-Ic, aph(3’)-XV, and aadA1) are each highly cor-
related with two distinct bacterial genera.

The correlation between MGEs and ARGs
We identified 1385 Insertion Sequences (ISs) belonging 
to 26 IS families. The number of ISs in pet dogs was sig-
nificantly lower than in stray and rural dogs (P < 0.001, 
Fig.S3A). We compared the relative abundance of ISs 
among the three dog groups, finding significant differ-
ences between each other (P < 0.001, Fig.  3A). Addi-
tionally, we investigated the abundance of other mobile 
genetic elements in fecal microbiomes of three dog 
groups. Similar to ISs, we found that both integra-
tive and conjugative elements (ICEs) and integrative 
and mobilizable elements (IMEs) were significantly 
more abundant in pet dogs than in the other groups 
(P < 0.001), while cis-mobilizable elements (CIMEs) 
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were only found in pet dogs and stray dogs (P < 0.001, 
Fig.S3B).

To evaluate the spread potential of ARGs, we analyzed 
Transfer-ARGs (T-ARGs) and Transfer-ISs (T-ISs), which 
are ARGs and ISs coexisting on the same contig within a 
distance of less than 5 kb upstream or downstream. We 
observed notable differences in both T-ARGs and T-ISs 
for pet dogs compared to the other two groups (P < 0.001, 
Fig.S3C). T-ISs and T-ARGs are over-represented in pet 
dogs, while rural dogs have the lowest number of T-ISs 
and the lowest relative abundance. Grouping IS families 
by relative abundance within each group, we observed 
that most high-abundance IS sequences were found in 
pet dogs, with a few IS families, such as IS3 and IS66, 
accounting for the majority of sequences (Fig. 3B).

We then conducted a network analysis of T-ARGs and 
T-ISs (Fig.  3C and Fig.  3D) containing 89 ISs and 110 
ARGs conferring to 10 classes of antibiotics. Among the 
ARGs, various ARGs pose potential transmission risks, 
especially those conferring aminoglycoside resistance, 
such as aac(3)-IV, ant(3’’)-Ia, etc. as well as the extended-
spectrum Beta-lactamase (ESBL) genes, such as blaSHV, 
blaTEM, etc. We also identified the quinolone resistance 
gene qnrS1, which poses a potential transmission risk, 
despite quinolones being synthetic antibiotics.

Among the IS families found in our study, the IS1595 
family was the most dominant with ISs-ARGs. ISCco2 
and ISSag10 were its main members, widely present 
in all groups. ISCco2 was associated with a wide range 
of ARGs, particularly aminoglycosides (96% of the IS-
ARGs), while ISSag10 showed a strong association with 
phosphomycin ARGs (98% of the IS-ARGs). Addition-
ally, ISKpn19 of the ISKra4 family was repeatedly identi-
fied around qnrS1. Notably, carbapenem resistance genes 
including blaNDM-1, blaNDM-22, and blaNDM-24, were identi-
fied in multiple stray dog samples, often associated with 
ISAba125. The gene blaCTX-M was mainly associated with 
IS5 and IS1380, while the blaTEM was widely linked to 
IS5, IS3, IS200/IS600, IS6, and IS66. Moreover, endemic 
IS families were observed in different dog groups. For 
instance, the IS1 family was almost exclusively found in 
pet dogs and was associated with ARGs conferring resist-
ance to tetracyclines, sulfonamides, and macrolides. The 
most abundant IS6-related gene, ISEc59, found in ICEP-
miChn3, was discovered in all three dog groups, exhib-
iting similar structures carrying aminoglycoside ARGs 
(aac(3)-IV and aph(4)-Ia) (Fig. 3E).

MAG‑based analysis of antibiotic resistant bacteria in three 
dog groups
In this study, we performed metagenomic binning on 
individual swab samples, creating a set of Metagen-
ome-Assembled Genomes (MAGs) with an estimated 

completeness ≥ 50% and an estimated contamina-
tion ≤ 10%. A total of 1,832 MAGs were assembled from 
anal swabs of stray dogs (n = 803), pet dogs (n = 509), 
and rural dogs (n = 520) (Table  S7). These MAGs were 
classified into eleven phyla, with Bacillota (n = 1095), 
Actinomycetota (n = 162), Pseudomonadota (n = 185), 
Bacteroidota (n = 247), Fusobacteriota (n = 64), and 
Campylobacterota (n = 62) being the dominant (Fig. 4A). 
We compared the relative abundance of ARGs, ISs, and 
VFGs carried by MAGs in the three groups. Pet dogs had 
significantly higher abundances of ARGs and ISs com-
pared to stray dogs and rural dogs. For VFGs, pet dogs 
showed highest abundance, while stray dogs had the low-
est among the three groups (Fig. 4B).

Among the three dog groups, pet and stray dogs 
shared more similar phyla structures. Approximately 
85% of MAGs in pet dog swabs were annotated to Bacil-
lota (66.6%), Actinomycetota (10.4%), and Bacteroidota 
(10.2%). Similarly, these phyla accounted for 61.7%, 
9.5%, and 13.4% of MAGs in stray dog. However, Bacil-
lota (49.8%), Pseudomonadota (18.8%) and Bacteroidota 
(16.7%) were the most prevalent in the rural dogs. Bacil-
lota is the most dominant phylum in all three dog groups 
(Fig.  4C). Among the six phyla, Campylobacterota car-
ried the fewest ARGs (< 0.1 per MAG). The other five 
phyla-level bacteria have a high prevalence of tetracy-
cline-resistant ARGs. Beta-lactam-resistant ARGs were 
more abundant in Bacteroidota and Pseudomonadota, 
while Bacteroidota carried a higher number of multid-
rug-resistant ARGs (> 0.1 per MAG) (Fig. 4D).

Of the 1832 MAGs, 407 carried 13 types of ARGs, with 
tetracycline, aminoglycoside, multidrug, Beta-lactam, 
and lincosamide resistance genes being the most fre-
quently detected. In these 407 ARG-carrying MAGs, 263 
might undergo HGT of ARGs due to the presence of IS 
family genes. Moreover, it’s noteworthy that some bac-
teria exhibit both potential multi-antibiotic resistance 
and pathogenicity characteristics. 169 ARG-carrying 
MAGs revealed pathogenic potential by harboring vari-
ous VFGs (called pathogenic antibiotic-resistant bacteria, 
PARB), spanning 30 different genera including Escheri-
chia (25/169), Peptacetobacter (20/169), Enterococcus 
(13/169), Blautia (11/169), Corynebacterium (11/169), 
and others (Table S8). A wide range of PARB MAGs also 
carried ISs (134/169), which further facilitates the dis-
semination of ARGs and simultaneously poses significant 
threats to human health. Among these PARBs, 18 harbor 
at least 3 ARGs and 10 VFGs, belonging to Escherichia, 
Klebsiella, Streptococcus, Enterobacter, Enterococcus, 
Proteus and Phocaeicola. Particularly, Escherichia coli (7) 
and Klebsiella pneumoniae (3) MAG are the most com-
mon, both of which are important enterobacteriaceae 
pathogens. Important Beta-lactam resistance genes such 



Page 10 of 16Zhou et al. Animal Microbiome            (2024) 6:76 

0

0

0

Tree scale: 

Phyla
Campylobacter ota
Pseudomona dota
Actino mycetota
Bacillota
Fusobacteriota
Bacteroidota
Others

Bins Groups
Stray
Pet
Rural

Number of ARGs
Min.(0), Max.(11)

Number of ISs
Min.(0), Max.(29)

Nmuber of V FGs
Min.(0), Max.(443)

(A)

(B)

(C) (D)

-5

0

5

10 *** ***

-5

0

5

10

15
*** ***

-5

0

5

10 *** ***
***

AR
G

s 
Ab

un
da

nc
e

(lo
g�

)
IS

s 
Ab

un
da

nc
e

(lo
g�

)
VF

G
s 

Ab
un

da
nc

e 
(lo

g�
)

Stray Pet Rural

0.0

0.2

0.4

0.6

0.8

Aminoglycoside
Amphenicol
β-lactam
Folate pathway antagonist
Fosfomycin
Glycopeptide
Lincosamide
Macrolide
Multi-drug
Quinolone
Rifamycin
Tetracycline

N
um

be
ro

fA
R

G
s

pe
rM

AG

Stray Pet Rural

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
ab

un
da

nc
e

of
Ph

yl
a

Actinomycetota
Bacillota
Bacteroidota
Campylobacterota
Cyanobacteriota
Deferribacterota
Deinococcota
Desulfobacterota
Fusobacteriota
Pseudomonadota
Spirochaetota

Ac
tin
om
yc
eto
ta

Ba
cil
lot
a

Ba
cte
roi
do
ta

Ca
mp
ylo
ba
cte
rot
a

Fu
so
ba
cte
rio
ta

Ps
eu
do
mo
na
do
ta

Fig. 4 Overview of MAGs in three dog groups. A Phylogenomic tree of dereplicated MAGs from all samples. Inner to outer rings represent phylum 
taxonomies, bin groups, and numbers of ARGs, ISs, and VFGs of each MAG. B Comparison of relative abundance of ARGs, ISs and VFGs of MAGs 
among three groups. C Percentage of phylum taxonomies in different dog groups. D Classification of antibiotics in MAGs associated with ARGs 
across various phyla from all samples



Page 11 of 16Zhou et al. Animal Microbiome            (2024) 6:76  

as blaNDM, blaTEM, and blaSHV were also found in eight 
PARB MAGs belonging to Klebsiella (3), Anaerobio-
spirillum (3), Corynebacterium (1), and Escherichia (1), 
although they may not exhibit multiple resistance. Nota-
bly, the genes blaNDM-5 and blaSHV-191 were present in a 
Klebsiella pneumoniae MAG from sample N09.

Differences in the shaping of the fecal microbiome 
and resistome in dogs living in various environments
We used machine learning methods to deeply explore 
the differences in the fecal microbial communities and 
ARG distributions among the three dog groups (pet, 
rural and stray dogs). In the microbial community 
analysis, the random forest model performed the best, 
achieving an average accuracy of 0.888 and an F1 value 
of 0.882 for the genus-level classification (Table  S9, Fig.
S4A). Among them, the distributions of the genera Ligi-
lactobacillus and Limosilactobacillus were significantly 
different (Table  S10, Fig.  5A). Notably, Ligilactobacillus 
was significantly more abundant in stray dogs than in 
other groups. For ARG classification, the random forest 
model performed the best, obtaining an average accuracy 
of 0.815, an F1 value of 0.808, a Precision value of 0.870, 
and a Recall value of 0.815 (Table  S9, Fig.S4B). Further 
SHAP value analysis revealed important features pre-
dicted by the model, especially the high SHAP value of 
the floR gene in different dog populations, indicating that 
floR may be a key factor contributing to the differences in 
ARGs between different populations (Table S11, Fig. 5B).

We evaluated the risk of antibiotic resistance and path-
ogenicity (RARP) across all samples, assigning RARP 
scores to 82 dog samples. The RARP ranged from a 
minimum of 17.63 (M052 from pet dog) to a maximum 
of 34.69 (LGB1 from stray dog). To compare the level of 
RARP among the three groups, we categorized dogs into 
four risk levels: high-risk dogs (HRDs) with a RARP of 24 
or more, upper-medium risk dogs (UMRDs) with a RARP 
between 22 and 24, medium-risk dogs (MRDs) with a 
RARP between 20 and 22, and low-risk dogs (LRDs) 
with a RARP of 20 or less as shown in Fig.S5. Among 
stray dogs, only one (4.0%) fell into the HRDs, one (4.0%) 
into the UMRDs, eight (32.0%) into the MRDs, and the 
remaining 15 (60.0%) into the LRDs. Most (55.0%) rural 

dogs fell into the LRDs with only three (15%) in the 
UMRDs and six (30.0%) in the MRDs. Surprisingly, the 
pet group had nine dogs (24.3%) in the HRDs, six (16.2%) 
in the UMRDs, 13 (35.1%) in the MRDs, and eight 
(21.6%) in the LRDs. Pet dogs had more than 40% in the 
UMRDs, much higher than the percentages for stray and 
rural dogs (Fig. 5C).

Discussion
Consistent with other dog fecal microbiome studies, five 
major phyla—Bacillota, Bacteroidota, Pseudomonadota, 
Actinomycetota, and Fusobacteriota—were observed 
in this study, with Bacillota and Bacteroidota contrib-
uting to over half of the microbiota [37, 38], although 
their proportions varied among the three dog groups. 
For instance, Bacillota was the most abundant in stray 
and pet dogs, while Pseudomonadota was in rural dogs. 
At the genus level, 498 bacterial genera were identified 
in the three dog groups, of which only 129 genera were 
shared among all three groups. Pet dogs had the low-
est genera diversity; this aligns with the lowest Shan-
non index observed in the pet dog fecal microbiome. 
The abundance of fecal fungi was significantly higher in 
stray and rural dogs than pet dogs, as expected. There are 
many studies demonstrate both phylogeny and diet play 
important role in animals including dogs. [38, 39] Epi-
demiological information shows that pet dogs primarily 
consume commercial dog food, which is relatively simple, 
whereas the other two dog groups have more exposure to 
a diverse range of foods, resulting in a more varied and 
complex diet.

Through machine learning, investigating microbes 
reveals the distinguishing between different dog popula-
tions. Certain important lactic acid bacteria (LAB) gen-
era in the dog feces may reflect gut health to some extent 
[40–42]. Several studies have shown that adding LAB 
can relieve diarrhea symptoms in dogs [42, 43], suggest-
ing that dogs with low intestinal LAB have a harder time 
recovering. The low abundance of LAB in pet dogs could 
potentially make their health more fragile. The difference 
in LAB within the three dog groups may be a compensa-
tory response to a more complex and difficult-to-digest 
diet. Ligilactobacillus and Limosilactobacillus provide 

(See figure on next page.)
Fig. 5 Differences in fecal microbiota communities and distribution of drug resistance genes among three dog groups (pet dogs, rural dogs, 
and stray dogs) based on machine learning methods (SVM, random forest, decision tree) and Assessment on Risk of Antimicrobial Resistance 
and Pathogenicity (RARP). A The top 25 enriched genera in different dog groups, as deduced from machine learning-based methods 
and the Kruskal–Wallis rank test. The abundancne of genera within each group of dogs is shown on the left. The adjusted p-values, calculated using 
the Benjamini–Hochberg method, are shown in the middle, The mean SHAP values from the machine learning analysis are shown on the right. 
B The top 25 enriched ARGs in different dog groups identified using machine learning-based methods and the Kruskal–Wallis rank test. The 
abundancne of ARGs, the adjusted p-values of the Benjamini–Hochberg method, and the mean SHAP values from the machine learning are shown 
from left to right. C Percentages of RARP in three dog groups
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Fig. 5 (See legend on previous page.)
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significant insights into how environmental and dietary 
factors affect the fecal microbiota. In addition, machine 
learning analysis indicates that floR shows significant dif-
ferences among the three dog groups, suggesting that its 
distribution pattern across groups may be associated with 
specific resistance characteristics. Although floR may not 
independently serve as a reliable resistance biomarker, 
its notable differences among various dog populations 
provide important reference information for evaluating 
antibiotic resistance. Nevertheless, further research is 
needed to clarify the potential risks associated with floR 
and its transmission between humans and animals.

In our study, we identified a total of 587 ARGs target-
ing 14 classes of antibiotics, covering almost all clini-
cally used antibiotics, and observed prevalent multidrug 
resistance (MDR) genes. Such abundant ARGs in dogs 
indicate that they can act as ARGs reservoirs. Rural and 
stray dogs exhibited a higher average number of ARGs 
compared to pet dogs, potentially due to increased expo-
sure to the external environment, although their overall 
abundance was very low. Notably, in a pet dog sample, we 
observed a high level of mcr-1, which confers resistance 
to last-resort antibiotic polymyxin [44]. Network analy-
sis suggested that various ARGs pose a potential trans-
mission risk, with aminoglycoside resistance genes being 
the most commonly associated with ISs. Aminoglycoside 
resistance genes were also discovered to co-occur with 
multiple types of ARGs. It is striking that such co-occur-
ring ARGs were observed in ICEs or transposons. For 
instance, the (SXT)/R391 family of ICEs was first identi-
fied in Proteus mirabilis from broilers in Shandong Prov-
ince, China, in 2013. In our study, the most abundant 
member of this family, ICEPmiChn3, was also detected 
in the fecal [45]. Similar conformations of ICEPmiChn3 
with those from chicken and humans fecal microbiota 
suggest their prevalent roles in the transmission of ARGs. 
The key recombinase encoded by tnpA in ICEPmiChn3 
is homologous to those identified in IS26 of the IS6 fam-
ily, which have been shown to possess strong transferable 
capabilities [46–48]. The high abundance and transfer-
ability of ARGs in dog fecal microbiota indicate a signifi-
cant risk to human health.

In addition to the risk posed by abundant transferable 
ARGs in dog fecal microbiota, more VFGs were simul-
taneously discovered in 18 PARBs deduced from MAGs. 
Among these 18 PARBs, one E. coli and three K. pneumo-
niae MAGs carrying ISs and a large number of VFGs are 
of particular concern, as they also harbored important 
Beta-lactam resistance genes such as blaTEM, blaSHV and 

blaNDM. Considering that both K. pneumoniae and E. coli 
are the most common nosocomial bacteria, their highly 
pathogenic features and resistance to clinically com-
monly used Beta-lactam antibiotics pose a risk of trans-
mission. In the risk assessment, we found that pet dogs 
had the highest overall RARP. Epidemiological informa-
tion shows that both pet dogs and rural dogs have more 
frequent contact with humans, but the RARP of rural 
dogs is closer to that of stray dogs than to that of pet 
dogs.

There is evidence that dog ownership has a measur-
able impact on the human microbiome. During the con-
tact between humans and dogs, dog owners develop 
a skin microbiome that is more similar to that of their 
dogs [49]. Especially, the beneficial aspect of dog owner-
ship on the human fecal microbiome has been observed. 
For instance, infants interacting with healthy dogs also 
develop a similar fecal microbiome and acquire a richer 
probiotic population [50, 51]. Due to ethical consid-
erations, there have been no studies on the impact of 
diseased dogs on human microbiota, but they could 
potentially pose a risk of transmitting harmful factors 
to humans, including pathogenic bacteria, ARGs, and 
ARBs. Animal fecal contamination has been identified 
as a key regulatory factor for the resistome of children’s 
fecal microbiota [52]. Although no antibiotics were 
administered to the dogs in the three months prior to the 
study, the effects of prior antimicrobial treatments may 
persist beyond this period. Compared to other groups, 
pet dogs are likely to have received antibiotic treatments 
at some point in their lives, which may be a significant 
factor contributing to the higher risk of antimicrobial 
resistance observed in this group [53]. The highest RARP 
observed in the pet dog from our study poses a potential 
public health threat as well.

This study has certain limitations. One potential limita-
tion is that the pet dogs included were primarily of Euro-
pean or American breeds, whereas the rural dogs were 
predominantly Chinese breeds. This distinction intro-
duces the possibility that genetic differences inherent to 
the host may have influenced our findings, potentially 
contributing to the considerable within-group variabil-
ity observed in fecal microbiota composition. While the 
presence of ARGs like mcr-1 and blaNDM in our samples 
is alarming, further validation would be required to con-
firm their clinical significance. Additionally, given the 
challenges in collecting samples from stray dogs, we were 
unable to obtain more comprehensive epidemiological 
data for this group. Furthermore, because fecal samples 
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from pet owners were not included, the study is limited 
in its ability to fully investigate the potential effects of 
close human-pet contact, which may affect the applica-
bility and interpretation of some results.

Conclusions
Our study conducted an analysis of the fecal microbi-
ome and resistome of dogs with different living styles, 
highlighting differences in their microbial composition. 
Our study indicates that pet dogs exhibit lower diversity 
of fecal microbiota and a reduced presence of lactic acid 
bacteria, suggesting a less healthy gut microbiota com-
pared to the other two groups. A reservoir of 587 ARGs 
conferring resistance to 14 classes of antibiotics was 
found in the dog feces. The highest RAPR was discovered 
in pet dogs, suggesting a potential public health risk.
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