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Abstract
Background  There is a growing interest in uncovering the factors that shape microbiome composition due to its 
association with complex phenotypic traits in livestock. Host genetic variation is increasingly recognized as a major 
factor influencing the microbiome. The Iberian pig breed, known for its high-quality meat products, includes various 
strains with recognized genetic and phenotypic variability. However, despite the microbiome’s known impact on 
pigs’ productive phenotypes such as meat quality traits, comparative analyses of gut microbial composition across 
Iberian pig strains are lacking. This study aims to explore the gut microbiota of two Iberian pig strains, Entrepelado 
(n = 74) and Retinto (n = 63), and their reciprocal crosses (n = 100), using machine learning (ML) models to identify 
key microbial taxa relevant for distinguishing their genetic backgrounds, which holds potential application in the pig 
industry. Nine ML algorithms, including tree-based, kernel-based, probabilistic, and linear algorithms, were used.

Results  Beta diversity analysis on 16 S rRNA microbiome data revealed compositional divergence among genetic, 
age and batch groups. ML models exploring maternal, paternal and heterosis effects showed varying levels of 
classification performance, with the paternal effect scenario being the best, achieving a mean Area Under the 
ROC curve (AUROC) of 0.74 using the Catboost (CB) algorithm. However, the most genetically distant animals, the 
purebreds, were more easily discriminated using the ML models. The classification of the two Iberian strains reached 
the highest mean AUROC of 0.83 using Support Vector Machine (SVM) model. The most relevant genera in this 
classification performance were Acetitomaculum, Butyricicoccus and Limosilactobacillus. All of which exhibited a 
relevant differential abundance between purebred animals using a Bayesian linear model.

Conclusions  The study confirms variations in gut microbiota among Iberian pig strains and their crosses, influenced 
by genetic and non-genetic factors. ML models, particularly CB and RF, as well as SVM in certain scenarios, combined 
with a feature selection process, effectively classified genetic groups based on microbiome data and identified 
key microbial taxa. These taxa were linked to short-chain fatty acids production and lipid metabolism, suggesting 
microbial composition differences may contribute to variations in fat-related traits among Iberian genetic groups.
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Background
In recent years, various studies have shown that the gut 
microbiome can explain a substantial part of the pheno-
typic variability in important traits in livestock [1, 2]. The 
microbiome plays a crucial role in modulating methane 
emissions in cattle [3], intramuscular fat and resilience in 
rabbits [4, 5] and growth and carcass composition pigs 
[6, 7]. Additionally, growing evidence suggests that host 
genetics can influence gut microbial composition and 
diversity [8]. Larzul et al. [9] showed a direct response 
after divergent selection for the abundance of bacterial 
genera related to feed efficiency in pigs, and a correlated 
response in this trait. Hence, studying the gut microbi-
ota could help disclose its impact on the variation of key 
traits in livestock.

An important pig breed that has recently gained con-
siderable attention in both national and international 
markets is the Iberian pig breed [10]. The increasing 
demand for its high-quality products is primarily due 
to its high intramuscular fat deposition and distinctive 
fatty acid profile, particularly its high oleic acid content. 
Maltecca et al. [11] found an association between gut 
microbiota and meat quality traits including fat depo-
sition in pigs. Hence, investigating the gut microbiota 
differences in Iberian pig strains with different meat 
quality could help identifying microbial biomarkers with 
potential application in the Iberian pig industry. Offi-
cially, five Iberian strains are recognized: Entrepelado, 
Retinto, Torbiscal, Lampiño, and Manchado de Jabugo, 
all of which exhibit substantial genetic diversity [12, 13]. 
Genomic studies have revealed distinct genomic back-
grounds within the Entrepelado, Retinto, and Torbiscal 
strains, and their reciprocal crosses [14]. This diversity 
extends to productive and reproductive performance, 
such as fat deposition and prolificacy, as well as gene 
expression profiles. In fact, research has highlighted 
the superior meat quality and prolificacy of the Retinto 
over the Entrepelado [15, 16]. However, the Entrepelado 
has demonstrated important maternal effects over the 
Retinto, positively impacting the offspring growth [16]. 
Crosses between these strains have shown notable heter-
osis effects on meat quality and litter size [15–17]. More-
over, Garrido et al. [18] and Villaplana-Velasco et al. [19] 
found that Retinto animals exhibit higher and healthier 
fat accumulation and greater expression of key lipogenic 
genes compared to other strains, such as Torbiscal and 
Lampiño. Despite their differences in productive traits 
and the demonstrated influence of the pig microbiome 
on these traits, the gut microbial composition of different 
Iberian pig strains has never been compared.

The pig microbiome is not only influenced by host 
genetics, but also by maternal factors [20], housing 
environment [21], diet [22], and age [23]. Decipher-
ing the influence of these factors on the microbiome is 

challenging due to its heterogeneity among individuals. 
Additionally, microbiome-derived data share complex 
relationships within each other and with traits of inter-
est and are sparse and compositional [24]. Given these 
peculiarities, it is crucial to use appropriate models that 
can effectively extract and utilize all the information 
from these biological datasets. One effective approach 
to analyzing these data is the use of Machine Learning 
(ML) algorithms. These models have shown their ability 
to capture complex patterns within the microbiota, that 
traditional analytical methods, such as linear regression 
and principal component analysis, might overlook [25]. 
However, the choice of the most effective model depends 
on the specific use case, so testing multiple ML models is 
advisable to identify the most suitable one [26].

This study aimed to explore the gut microbiota of Ibe-
rian pigs belonging to two different strains (Entrepelado 
and Retinto) and their reciprocal crosses, and identify 
the key taxa relevant for distinguishing the genetic back-
ground of these Iberian pigs. For this purpose, we evalu-
ated the classification performance of nine widely used 
ML models, using microbiota abundances derived from 
16 S rRNA sequencing as predictors. We also identified 
the most relevant set of predictive taxa using a feature 
selection approach and compared them with differen-
tially abundant taxa among different genetic groups. Fur-
thermore, we provided a biological interpretation of the 
most influential taxa in differentiating the genetic groups, 
offering insights into their potential impact on host 
phenotypes.

Methods
Animals and samples
The animals used in this study belonged to two Iberian 
purebred pig strains (RR; Retinto and EE; Entrepelado) 
and their reciprocal crosses (ER and RE), where the first 
letter indicates the sire line and the second the maternal 
line. These animals originated from the Iberian Testing 
Center (Almendralejo-Extremadura, Spain) of the com-
pany INGA FOOD S.A (Tres Cantos-Madrid, Spain). 
The pigs were randomly housed in groups of 80, avoid-
ing full sibs, and fattened ad libitum by automatic feeders 
with commercial feedstuffs. In total, 237 castrated males 
were used, of which 74 pigs belonged to the EE strain, 63 
to the RR, 49 to the RE and 51 to the ER. Feces samples 
were collected at the CTI facilities between October 
2021 and November 2022, prior to the animals’ trans-
port to the slaughterhouse. The pigs weighted on aver-
age 161.6 ± 13.6 kg at the end of the fattening period and 
were on average 365 ± 35 days of age. The feces samples 
were homogenized in 50-mL Falcon tubes and aliquoted 
in 2-mL cryotubes for their immediate freeze in liquid 
nitrogen. They were then stored at -80 °C at the CTI facil-
ity lab until processed.
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DNA extraction and 16 S rRNA gene amplicon sequencing
Bacterial DNA for amplicon sequencing was isolated 
using the HigherPurity™ Soil DNA Isolation Kit (Canvax 
Reagents SL, Valladolid, Spain), following manufacturer’s 
instructions. DNA concentration and purity were esti-
mated by measuring the 260/280 ratio with a Nanodrop 
ND-1000 and verifying by a Qubit™ 4 Fluorometer (Invi-
trogen, Thermo Fisher Scientific, Carlsbad, CA, USA). 
The hypervariable V3-V4 region of the 16  S ribosomal 
RNA gene was amplified to identify the microbial com-
munity, using previously described primers [27]: forward 
(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGA-
CAGCCTACGGGNGGCWGCAG-3′) and reverse 
(5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGA-
CAGGACTACHVGGGTATCTAATCC-3′). PCR ampli-
fication was carried out in a 25-μl volume per sample, 
employing a primer concentration of 0.08 μM and NEB-
Next Q5 Hot Start HiFi PCR Master Mix (New England 
Biolabs, Ipswich, MA, USA). PCR cycling conditions 
were as follow: 98 °C for 30 s; 5 cycles at 98 °C for 10 s, 
55  °C for 5 min, and 65  °C for 45 s. After this first PCR 
step, a second PCR was performed to attach Illumina 
(Illumina, Inc., San Diego, CA, USA) barcodes and full-
length Nextera adapters. This second PCR was performed 
in a total volume of 50-μl, incorporating NEBNext Q5 
Hot Start HiFi PCR Master Mix (New England Biolabs) 
and Nextera XT v2 adaptor primers from Illumina. The 
cycling conditions for the second PCR were as follows: 
98 °C for 30 s, 17 cycles of 98 °C for 10 s, 55 °C for 30 s, 
and 65 °C for 45 s, and 65 ºC for 5 min. The PCR prod-
ucts were purified using AgenCourt AMPure XP beads 
(Beckman Coulter, Inc., Brea, CA, USA) to clean up the 
final library, according to manufacturer’s instructions. 
The amplicons’ quality was evaluated using a Fragment 
Analyzer (Agilent Biosystems, Agilent Technologies, Inc., 
Santa Clara, CA, USA) and quantified through qPCR 
using the Kapa library quantification kit designed for Illu-
mina Platforms (Kapa Biosystems) on an ABI 7900HT 
real-time cycler (Applied Biosystems, Thermo Fisher Sci-
entific, Carlsbad, CA, USA). Amplicons were normalized 
and pooled in an equimolar concentration of 15 pM and 
prepared for sequencing on the Illumina MiSeq platform 
with paired-end reads of 300 bp. A total of 237 samples 
were randomly distributed across eight plates, including 
the negative and positive controls, under the same con-
ditions and reagents. Positive controls were set up using 
the ZymoBIOMICS™ Microbial Community DNA Stan-
dard (ref. D6306, Zymo).

Bioinformatic pipeline
Quality control of raw reads was performed using FastQC 
v0.11.9 [28] and MultiQC v1.18 [29] tools. One sam-
ple was discarded due to an abnormal total number of 
reads. Sequences were processed using nf-core/ampliseq 

pipeline v2.11.0 [30], which used Cutadapt program [31] 
for primer trimming, removing the previously described 
forward and reverse primers. Quality filtering and trun-
cation were handled by DADA2 [32]. Forward reads were 
trimmed at 280 bases and reverse ones at 220 bases to 
filter out low-quality base calls. Moreover, reads shorter 
than 100  bp were discarded. Amplicon sequence vari-
ants (ASVs) were inferred for each sample using pooled 
mode to improve sensitivity in detecting low-abundance 
variants. ASVs with fewer than 50 reads were filtered to 
retain only relevant data. Taxonomic classification was 
conducted with DADA2 using SILVA reference data-
base v.138 [33]. ASVs assigned to Archaea, Eukaryota, 
Mitochondria and Chloroplasts were excluded, focusing 
further analyses on the ASVs affiliated with the Bacteria 
domain. The remaining ASVs were collapsed to the genus 
level, and those lacking annotation at that taxonomic 
level were removed from the dataset. The bacterial com-
munity from positive controls was adequately character-
ized, and no contaminants were identified in the negative 
controls. Principal component analysis (PCA) was per-
formed on the genus-level abundance table to detect 
samples outliers. Further analysis used a total of 235 sam-
ples and 121 genera.

Alpha- and beta-diversity
Alpha- and beta-diversity were computed on different 
normalized datasets. Alpha-diversity metrics: Shannon’s 
index [34], Pielou evenness [35], and Chao1 estimator 
[36] were computed on rarefied sequences at the genus 
level, considering a maximum sampling depth of 6904, 
that is the minimum read depth registered in the samples 
after the quality control of sequencing data. Metrics were 
calculated using the vegan and fossil package in R. We 
used the Wilcoxon rank-sum test with p-values adjusted 
using the Benjamini-Hochberg (BH) false discovery 
rate (FDR) correction to compare alpha-diversity mea-
sures among different groups. These comparison groups 
included the four genetic groups (the strains and their 
reciprocal crosses: EE, ER, RE, RR), age groups (strati-
fied into four quartiles with ranges of 298–344, 345–362, 
363–383, and 384–494 days), and four different batches 
(9, 10, 11, 12). Significant differences in alpha-diversity 
measures were defined as those with FDR lower than 
0.05. Beta-diversity assessment and posterior analysis 
were performed on a dataset comprising genera present 
in a minimum of 75% of samples for each genetic group 
(EE, RR, ER, RE). A total of 121 genera remained in the 
dataset. Beta-diversity was computed by calculating the 
Aitchison dissimilarity distance matrix, correspond-
ing to Euclidean distances applied to centered log-ratio 
(CLR) transformed abundances, to account for their 
compositional nature [37]. The CLR transformation was 
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performed with the “compositions” v.2.0–6 R package 
[38]. The CLR was defined by Aitchison [39] as:

	
clr (xi) =

[
ln

x11

gm (xi)
, ln

x12

gm (xi)
, . . . , ln

x1k

gm (xi)

]
� (1)

,
where gm (xi) is the geometric mean of the composi-
tion xi= [ x11, x12, . . . x1k] representing the sample 
abundance for each genus k on the individual i. To avoid 
undefined logarithm, zeros were imputed by the Bayes-
ian-multiplicative replacement approach [40] using the 
“zCompositions” v.1.4.1 R package [41]. Differences in 
microbiome beta-diversity were assessed for strains, age 
and animal batches using a Permutational Multivariable 
Analysis of Variance (PERMANOVA; p-value ≤ 0.05) after 
999 permutations, implemented with the Vegan v.2.6-4 R 
package [42], with a prior check for homogeneity.

Machine learning analysis
In this study, nine supervised machine learning (ML) 
algorithms were used to build predictive models to clas-
sify the Iberian animals based on their microbiota. For 
that, the 121 CLR-transformed genera abundances were 
used after a pre-correction for confounding effects of 
age (as a continuous variables) and animal batches (4 
batches). The ML algorithms employed included tree-
based models with various ensemble learning techniques: 
Decision Tree (DT) [43], Random Forest (RF) [43], 
XGBoost (XGB) [44], AdaBoost (AB) [45], and CatBoost 
(CB) [46]. Kernel-based approaches were represented 
by Support Vector Machine (SVM) [47]. Additionally, 
probabilistic algorithms including Gaussian Naive Bayes 
(GNB) [48] and Logistic Regression (LR) [49] were used 
along with the Partial Least Squares Discriminant Anal-
ysis (PLS-DA) [50]. All the algorithms were executed in 
Python programming language (Python v.3.11.5), using 
the Scikit-learn module v.1.3.2 [51].

For each algorithm, we explored five different classifi-
cation scenarios:

1.	 Four genetic groups scenario: The genetic groups 
consisted of the two purebred strains and their 
reciprocal crosses (EE, RR, ER, RE), each treated as a 
separate class.

2.	 Purebred scenario: Only purebred individuals were 
evaluated (EE and RR).

3.	 Maternal scenario: Individuals were grouped by 
maternal line (EE/RE and RR/ER).

4.	 Paternal scenario: Individuals were grouped by 
paternal line (EE/ER and RR/RE).

5.	 Heterosis scenario: One class for crossed individuals 
(ER/RE) and another for purebred individuals (RR/
EE).

In each of the five scenarios, the dataset was randomly 
stratified into training and test sets, with a split ratio of 
75/25. The training set was used for hyperparameter tun-
ing and feature selection via 5-fold cross-validation, using 
RandomizedSearchCV method from Scikit-learn module 
[51], to identify the best combination of hyperparameters 
through a search over defined parameter values. Hyper-
parameters and their range of values used for each ML 
algorithm are detailed in Additional file 1.

Performance evaluation
The entire dataset was randomly resampled 200 times, 
creating unique training and test sets each time to sim-
ulate a wide range of possible data scenarios. The previ-
ously optimized model was then tested against these 
200 newly formed test sets, allowing for a comprehen-
sive evaluation of the model’s stability and generaliza-
tion capabilities across varied data subsets. Performance 
of each of these resampled test sets was assessed using 
the Area Under the Receiver Operating Characteristic 
Curve (AUROC), as described by Bradley [52]. Mean 
and 95% confidence interval (CI) for the AUROC scores 
were computed by estimating the mean and the 2.5th and 
97.5th percentiles of the resulting prediction distribution 
for the test sets in each scenario. A threshold of 0.60 was 
considered the minimum AUROC for an acceptable clas-
sifier [53].

Feature selection
Once the classification tasks were performed across 
the five scenarios, a feature selection (FS) process was 
employed to eliminate noisy variables and reduce dimen-
sionality. For that, the genera were ranked according to 
their importance scores in every scenario using RF clas-
sifier, and these scores were averaged over 20 iterations. 
In a RF model, the feature importance sums to 1. There-
fore, with no differences in contribution among features, 
the importance of each feature would be 1/121, given that 
121 genera were used. Genera with importance scores 
exceeding this threshold were selected. Besides, we nar-
rowed them down to only those cumulatively explaining 
80% of the importance. After FS, the classification was 
repeated to evaluate the performance of the models with 
the selected set of genera.

Differential abundance analysis
Differential abundance analysis (DA) was performed on 
the same dataset used for ML analysis to identify the rel-
evant differentially abundant genera across scenarios. For 
that, linear models were computed as follows:

	 yikj = µ + Skj + eikj ,
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Where yikj  is the CLR-transformed and corrected 
abundance of the sample i for the genus k under the 
scenario-related class j; μ is the mean; Skj  is the effect 
of the scenario-related class j on the genus k; which can 
be either the four genetic groups effect (4 levels), the 
maternal effect (2 levels), the paternal effect (2 levels) 
or the heterosis effect (2 levels); and eikj  is the resid-
ual for sample i for the genus k and class j. The models 
were solved by MCMC with the “brms” R package [54] 
using four chains with a length of 50,000 iterations, a 
lag of 10, and a burn-in of 1000 iterations, assuming flat 
priors. The convergence of the posterior distribution 
for each model was evaluated by comparing the within-
chain variance and between-chain variance known as R̂
, with R̂ close to 1 indicating convergence [55]. Addition-
ally, the convergence plots were visually checked for all 
cases. The marginal posterior distribution (MPD) of the 
pairwise differences between classes in each scenario was 
computed to estimate the posterior mean and the prob-
ability of the difference being either positive or negative 
(P0). The posterior mean of the differences was given in 
units of standard deviation (SD) of each genus. Genera 
with a minimum difference mean of 0.50 SD and a P0 
higher than 95% were considered differentially abundant 
between the groups in each scenario.

Results
Microbiota composition of the Iberian pig genetic groups
A total of 16,820,609 raw reads corresponding to 12,158 
ASVs were obtained after 16 S rRNA gene sequencing of 
fecal samples from 237 Iberian pigs, with an average of 
70,973 ± 21,461 reads per sample. After taxa and abun-
dance filtering, the number of ASVs dropped to 6986 
with a total of 16,396,525 reads (97.47%) and an average 
of 69,183 ± 20,726 reads per sample. Taxonomic annota-
tion identified a total of 16 phyla, 26 classes, 57 orders, 
96 families and 262 genera in the 235 fecal samples, with 
only 7.1% of the reads not reaching a taxonomic anno-
tation at genus level. The Firmicutes were the most 
abundant phylum in the fecal microbiota, with an aver-
age relative abundance (RA) of 93.9%, followed by Bac-
teroidota, which represented an average of 4.5% RA. The 
remaining 1.6% comprised fourteen other phyla which 
include Actinobacteriota, Spirochaetota, Proteobacteria, 
Verrucomicrobiota, Planctomycetota, Cyanobacteria, 
Desulfobacterota, Patescibacteria, Campylobacterota, 
Fibrobacterota, Elusimicrobiota, Synergistota, Deferrib-
acterota and Fusobacteriota. The Streptococcaceae fam-
ily, which belongs to the Firmicutes phylum, was the most 
abundant family in the EE, RE, and ER groups, with rela-
tive abundances of 25.8%, 25.5%, and 23.9%, respectively 
(Fig. 1). It was followed by Clostridiaceae in the EE group 
and Lactobacillaceae in the RE and ER groups. Mean-
while, the Lactobacillaceae family was the most prevalent 

in the RR group accounting for 25.1% RA, with the Strep-
tococcaceae family closely behind (Fig.  1). At the genus 
level, Streptococcus was the most dominant genus across 
the four groups, accounting for an average of 25.7% of the 
total abundance. Clostridium sensu stricto 1 was the sec-
ond most abundant genus in the ER, RE, and EE groups, 
while Lactobacillus held this position in the RR group. A 
table showing the relative abundance data at the phylum, 
family, and genus levels for groups with different genetic 
backgrounds is provided [see Additional file 2].

Differences in the microbiota composition between 
genetic groups were tested by computing alpha- and 
beta-diversity at genus level. Alpha-diversity indexes 
(Chao1 index, Pielou evenness and Shannon index) were 
computed in a rarified dataset. No significant differ-
ences in alpha-diversity metrics were found among the 
different genetic groups [Fig.  2 and Additional file 3]. 
However, all alpha-diversity metrics were significantly 
different between most of age categories as well as ani-
mal batches (Fig.  2). On the other hand, beta-diversity 
was analyzed on the CLR-transformed dataset using 
Aitchison distances. The analysis indicated a statisti-
cally significant effect from genetic group, age, and batch 
(PERMANOVA; p-value = 0.001). After adjusting the 
CLR-transformed genera abundances for the confound-
ing effects of age and batch, the results of beta-diversity 
analysis remained statistically significant for genetic 
groups (PERMANOVA; p-value = 0.023).

Classification results with machine learning
The analysis of microbial diversity revealed different 
microbiota compositions between the genetic groups. To 
test the potential for classifying these animals based on 
their microbiota, we evaluated the classification perfor-
mance of nine machine learning (ML) models and com-
puted AUROC scores [see Additional file 4]. In the first 
scenario, which involved differentiating the four genetic 
groups, the purebreds EE and RR, and their recipro-
cal crosses (ER and RE), the best performing ML model 
was Catboost classifier (CB) (Fig.  3), which achieved a 
classification performance of 0.64 (95% C.I. [0.63, 0.64]). 
A detailed analysis of the confusion matrices over 200 
data resampling revealed that the purebred individuals 
(EE and RR) were generally well classified. In contrast, 
the crossed individuals (ER and RE) were often misclas-
sified as purebred individuals [see Additional file 5]. 
Indeed, the Purebred scenario showed the best classifica-
tion performance (Fig. 3) with an AUROC of 0.77 using 
the same classifier (CB), with a 95% C.I. of [0.76, 0.78]. 
The Maternal scenario, which aimed to classify individu-
als into EE-RE and RR-ER groups to explore microbial 
differentiation based on the maternal effects of these 
strains, yielded an AUROC of 0.66 (95% C.I. [0.65, 0.66]) 
achieved by XGB classifier (Fig. 3). Likewise, the Paternal 
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Fig. 1  Relative abundance of the fecal microbiota at the family level. Stacked bar plot of the mean relative abundance (RA) of fecal microbiota in the 
genetic groups composed of the two Iberian pig Entrepelado (EE) and Retinto (RR) and their reciprocal crosses (ER and RE) at the family level. The ‘Other’ 
group includes 80 families, each with an average RA of less than 0.5%

 



Page 7 of 15Azouggagh et al. Animal Microbiome            (2025) 7:13 

scenario aimed to distinguish between the EE-ER and 
RR-RE groups, to explore the paternal effect of these 
strains on the microbiota, and the Catboost classifier 
(LR) showed the best results with a mean AUROC of 
0.68 (95% C.I. [0.67, 0.69]) [Additional file 4]. Finally, the 

classification performance under the heterosis scenario 
was evaluated, with a focus on distinguishing individuals 
in the EE-RR group from those in the ER-RE group. The 
algorithms struggled to differentiate crossed individuals 
from purebred ones, with the best mean AUROC being 

Fig. 2  Comparison of three alpha-diversity indices (Chao1, Pielou evenness and Shannon index) between age category groups, animal batches and ge-
netic groups. Wilcoxon rank-sum test was used for comparisons between the four levels of each factor, with the correction for multiple test comparisons, 
FDR p-value < 0.05. The graph shows values of diversity indices on the Y-axis and factors on the X-axis, including Age category groups (1: 298–344 days; 
2:345–362 days; 3:363–383 days and 4:384–494 days), Batch groups (9, 10, 11, 12) and genetic groups (Strains and their reciprocal crosses: EE, ER, RE, RR). 
No significant differences in alpha-diversity metrics were found between genetic groups. For age category and batch, groups with the same letter or 
sharing a letter, are not significantly different from each other
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0.58 (95% CI: [0.57, 0.59]) using once again the Catboost 
classifier (CB) [Additional file 4].

Feature selection and subsequent classification results
Feature Selection (FS) using RF impurity-based impor-
tance scores [see Additional file 6] allowed a dimen-
sionality reduction and focused on identifying the most 
relevant genera. The identified number of relevant genera 
ranged between 25 and 35, depending on the scenario. 
Figure 4 shows the number of relevant genera common to 
all five scenarios. Acetitomaculum, Escherichia shigella 
and Lachnospiraceae FCS020 group were the most con-
sistent features, identified as important in all scenarios.

Performances of the nine ML models after FS resulted 
in moderate to substantial improvements in classification 
results [see Additional file 7]. The best AUROC scores 
and the best-performing models before and after FS are 
reported in Table  1, with the mean percentage increase 
in performance per scenario. Additionally, compara-
tive results of the algorithms’ performances, evaluated 
through a t-test before and after FS, are detailed in Addi-
tional file 8. The best AUROC score in the Purebred sce-
nario improved from 0.77 to 0.83 using the SVM model, 
with an average performance increase of 6.5% across 
all models. In the Heterosis scenario, AUROC scores 
increased from 0.58 to 0.66 with an average performance 

increase of 11.6%. Per models, GNB registered the high-
est percentage increase across scenarios after performing 
FS, followed by AB, SVM, RF, CB, LR, XGB, PLSDA, and 
DT. This is despite RF being the model used for FS.

Differential abundance analysis
The genera with differential abundance (DA) between 
genetic groups for each scenario were identified by apply-
ing a Bayesian linear model (Table 2). A total of 20 gen-
era demonstrated DA, each characterized by a minimum 
mean difference of 0.50 SD and a P0 value greater than 
0.95. Of these, 16 genera were differentially abundant 
between purebreds, with Acetitomaculum, Butyricicoc-
cus and Romboutsia displaying the most relevant DA 
between EE and RR. All the genera identified in the DA 
analysis were also selected in the FS process [see Addi-
tional file 6], with most achieving the highest impor-
tance scores in classification tasks across scenarios. For 
instance, Acetitomaculum displayed the highest impor-
tance score in the Four genetic groups, Purebred and 
Paternal scenarios, with higher abundance in the RR 
group/paternal group compared to EE one. The EE vs. 
ER comparison group exhibited the highest number 
of differentially abundant taxa (seven genera) after the 
purebred groups, followed by the EE vs. RE comparison 
group with four taxa exhibiting DA. However, no taxa 

Fig. 3  Boxplots of the AUROC scores of machine learning (ML) models on the test sets across scenarios. ML models include Support Vector Machine 
(SVM), Gaussian Naïve Bayes (NB), decision tree (DT), random forest (RF), AdaBoost (AB), CatBoost (CB), XGBoost (XGB), Logistic Regression (LR) and Partial 
Least Squares-Discriminant analysis (PLS-DA). The colors in the boxplots are ordered from right to left as follows: SVM, NB, DT, RF, AB, CB, XGB, LR, and PLS-
DA. The dashed red line indicates an AUROC of 0.60, representing the minimum threshold for an acceptable classifier
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were found to be differentially abundant between mater-
nal groups (Maternal scenario), or between purebred and 
crossbred animals (Table 2).

Discussion
Microbiome diversity
The microbial composition analysis indicated that the 
most abundant phylum present in the fecal samples of 
all groups is Firmicutes (93.9%), significantly ahead Bac-
teroidota (4.5%) and the rest of phyla (1.3%). Kim et al. 
[56] andXiao et al. [57] also reported that Firmicutes 
and Bacteroidota collectively constituted more than 90% 
of all bacteria present in the pig gut microbiota with a 
greater abundance in Firmicutes. These two phyla are the 
primary bacterial divisions of gut microbiota in mam-
mals and are strongly associated with body fat in both 
humans and mice [58]. However, our results showed that 
Firmicutes are overwhelmingly dominant compared to 

Bacteroidota. Ban-Tokuda et al. [59] reported that the 
fecal level of Firmicutes significantly increased with fat-
tening in pigs, while those of Bacteroidetes significantly 
decreased. This pattern aligns with the fatty nature of the 
Iberian pig breed and the fattening stage of the animals 
used in this study.

At the genus level, Streptococcus dominated the 
microbial composition of animals from all genetic back-
grounds, consistent with findings by Heras-Molina et al. 
[60], who reported that this genus was the most abun-
dant in fecal samples from 210-day-old purebred Iberian 
pigs. In a study including Torbiscal Iberian pigs, Crespo-
Piazuelo et al. [61] found that Streptococcus was the most 
abundant genus in the ileum, however its abundance 
decreased significantly in the distal colon, a region likely 
more similar to the fecal microbial composition [62]. In 
another study also focusing on Torbiscal Iberian pigs 
using stool samples, López-García et al. [63] revealed 

Table 1  AUROC scores ± SD of the best model before and after applying feature selection, and the AUROC mean percentage increase 
per scenario, considering all models
Scenario No FS FS Mean increase

AUROC Model AUROC Model
Four genetic groups 0.64 ± 0.04 CB 0.68 ± 0.04 RF 6.9%
Purebred 0.77 ± 0.07 CB 0.83 ± 0.06 SVM 6.5%
Maternal 0.66 ± 0.06 XGB 0.70 ± 0.06 CB 4.3%
Paternal 0.68 ± 0.05 CB 0.74 ± 0.05 CB 8.7%
Heterosis 0.58 ± 0.06 CB 0.66 ± 0.06 CB 11.6%
Abbreviations; FS: Feature selection, CB: Catboost classifier, XGB: XGboost classifier, RF: Random Forest classifier, SVM: Support vector machine classifier

Fig. 4  Upset plot showing intersections among the selected genera of the five scenarios. The blue vertical bars indicate the number of genera selected 
in only one scenario. Gray and burgundy colors are for genera in two and three scenarios, respectively. The green color is for common genera present in 
four scenarios. Orange color is for common genera between all scenarios. Connected circles indicate an intersection of genera between scenarios. The 
circles represent unique genera. The number of genera selected in each one of the five sets is plotted in horizontal bars
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that Prevotella 9 was the most abundant genus far sur-
passing Streptococcus, with Lactobacillus ranking second, 
an observation that aligns with our findings in the RR 
strain. However, it is worth noting that the animals in the 
studies by Crespo-Piazuelo et al. (2018) and López-Gar-
cía et al. (2021) were 120 and 117 days old, respectively, 
whereas the animals in our study averaged 365 days of 
age. Age is a major driver of microbial composition, as 
demonstrated in various longitudinal studies [64].

The alpha diversity indices did not show relevant dif-
ferences within the four genetic groups. However, beta 
diversity analysis, using the Aitchison distance matrix, 
revealed relevant compositional divergence among the 
four genetic groups. This suggests that while the diversity 
of the gut microbial community of the Iberian pig was 
similar within the four genetic groups, the overall bacte-
rial abundance profile was significantly different among 
them. On the other hand, both age category and animal 
batch were a great source of alpha and beta-diversity 
differences within and between animals respectively. 
This observation aligns with previous research on pig 
gut microbiome, highlighting age as a driving factor in 
microbiota variation [65], in addition to studies showing 

that pig microbiota may be susceptible to uncontrolled 
microenvironmental factors such as animal batch [66].

Classification performance
Given the reported phenotypic [15, 67], genetic [12, 14] 
and transcriptomic [18, 19] differences between different 
Iberian pig strains, especially in purebreds, our primary 
hypothesis was that these differences could be also evi-
dent at the microbiota level. This hypothesis was initially 
supported by the beta-diversity analysis and further con-
firmed by the satisfactory results of the different scenario 
classification tasks. We showed that the most genetically 
distant animals, the purebred animals [14], were more 
easily discriminated based on their microbiota, achiev-
ing the highest AUROC among all scenarios: 0.77 before 
FS and 0.83 after FS. The Four genetic groups scenario 
failed in the classification of the crossbreeds, while the 
purebred animals were properly classified, in line with 
the results obtained in the Purebred scenario. The con-
fusion matrices indicated that crossbred animals were 
predominantly misclassified as purebred ones rather 
than being confused within each other. This finding was 
consistent with the Heterosis scenario (AUROC of 0.58 
before FS and 0.66 after FS, 95% C.I. [0.65, 0.67]), where 
it was difficult to identify patterns that could group cross-
breds together. This contrasts with the pattern found by 
Pena et al. [14], which suggested that crossbred animals 
(ER and RE) tended to cluster together using genotyping 
data. Crossbred animals were more likely to be mistaken 
for their paternal or maternal line. with a slight tendency 
towards the paternal line. This tendency is reinforced by 
results of the Paternal (AUROC of 0.74, 95% C.I. [0.72, 
0.73]) and Maternal scenarios (AUROC of 0.70, 95% C.I. 
[0.69, 0.71]), where a slight increase in performance was 
obtained by the models, indicating that certain microbi-
ota variability may be associated with these effects. These 
findings support the idea that microbiota may be trans-
mitted to offspring. Camarinha-Silva et al. [1] reported 
microbiota heritabilities up to 0.57. However, the trans-
mission of the microbiota, either partially or entirely, 
from one generation to the next is most likely facilitated 
by physical contact between newborns and their mothers 
[68]. Piglets come into contact with the dam’s microbial 
communities during and after passing through the birth 
canal, as well as during nursing, suckling, and maternal 
care [69, 70]. However, few studies have explored the 
influence of the paternal microbiota on the phenotypic 
traits and microbiota of offspring. Animals used were 
not in physical contact with their sires, this suggests that 
any paternal effect is likely influenced by genetics. Srihi 
et al. [71] identified the presence of genomic imprinting, 
an important epigenetic phenomenon, on reproductive 
traits in a crossed population between EE and RR Iberian 
animals. This observation may explain the tendency of 

Table 2  Differentially abundant taxa between different genetic 
groups, with a minimum mean difference of 0.50 SD and a P0 
value greater than 0.95. Genera are indicated based on the group 
in which they are more abundant
Comparison 
groups

Differentially abundant taxa

EE-RR Terrisporobacter (*), Clostridium sensu stricto 1 (*), 
Butyricicoccus (*), Romboutsia (*), Family XIII UCG 
001 (*), Lachnospiraceae FCS020 group (*), UCG 
002 (*), Eubacterium brachy group (*), Escherichia 
Shigella (*),
Lactobacillus (-), Limosilactobacillus (-), Acetitomac-
ulum (-), UCG 008 (-), Paludicola (-), Ruminococcus 
gnavus group (-), Eubacterium fissicatena group (*)

EE-RE Colidextribacter (-), Acetitomaculum (-), Phascolarc-
tobacterium (*), Escherichia-Shigella (*)

EE-ER Colidextribacter (-), Acetitomaculum (-), UCG-008 
(-), Paludicola (-), Eubacterium fissicatena group (-), 
Fusicatenibacter (*), Escherichia-Shigella (*)

ER-RR Ruminococcus (*)
ER-RE -
RE-RR -
EE maternal group 
vs.
RR maternal group

-

EE paternal group 
vs. RR paternal 
group

Acetitomaculum (-)

Purebred vs. 
crossbred

-

(*): More abundant in the first group of the comparison

(-): More abundant in the second group of the comparison
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animals to cluster slightly more according to their pater-
nal line than their maternal line, despite the absence of 
direct contact between sire and offspring. However, fur-
ther investigations are required to elucidate the influence 
of the paternal microbiota on their offspring.

Overall, CB, along with RF, proved to be the best-
performing machine learning models, both before and 
after feature selection (FS), except in the Purebred sce-
nario where the SVM model performed well specifically 
after FS. Various microbial classification studies have 
demonstrated that CB outperforms other ML methods 
employed in the present study [72, 73]. Additionally, 
Roguet et al. [74] emphasized the suitability and rel-
evance of the RF classification approach for fecal source 
identification using 16  S rRNA gene amplicons. On the 
other hand, implementation of RF-based feature selec-
tion allowed the number of genera to be reduced by three 
quarters, achieving better performance compared to 
using the full dataset. With the exception of the maternal 
scenario, we found that the more effective the initial clas-
sification was, the smaller the performance gain observed 
after FS, since the model tends to identify the correct pat-
terns and generalize properly without the need to reduce 
the dimensionality of the data. It should be noted that 
the performance results of each model were obtained 
using multiple data splits, as there was a risk of obtaining 
either random or biased estimates of model performance 
with only a single data split. This approach is particu-
larly important given the limited size and heterogeneous 
nature of the dataset, as relying on a single random data 
split to assess performance can lead to misleading con-
clusions. A systematic study of ML benchmarks by 
Bouthillier et al. [75], shows that the use of multiple data 
splits, and therefore multiple test sets, improves the esti-
mation of the general performance of ML algorithms.

Feature importance vs. differential abundance
The use of ML models in our study was not only sought 
to address the classification aspect of the microbiota 
data, but also to identify meaningful taxonomic signa-
tures. The biological implications of the five genera with 
the highest importance scores of the most interesting 
classification scenarios were evaluated.

Classification tasks in the Purebred scenario were effec-
tive, achieving an AUROC of 0.83 after feature selection. 
This indicates the strength of evidence that genera con-
sistently obtaining the highest importance scores across 
20 iterations are unlikely due to random chance. The five 
more relevant genera of this scenario were Acetitomacu-
lum, Butyricicoccus, Limosilactobacillus, Erysipelotricha-
ceae UCG-003 and NK4A214 group. Interestingly, the 
most important genus in this scenario -Acetitomacu-
lum- was also the most important one in the Four genetic 
groups and the Paternal scenarios. Erysipelotrichaceae 

UCG-003 was found among the top five in the maternal 
scenario. However, none of the top five important genera 
in the Purebred scenario appear among the top five in the 
Heterosis scenario, nor is there any overlap within the 
top ten. The observed discrepancy is likely attributable 
to the more accurate classification of purebred animals, 
which influences the overall performance in the Four 
Genetic Groups, Paternal, and Maternal scenarios, where 
purebreds are grouped together.

Acetitomaculum, is a genus part of the Lachnospira-
ceae family. Members of this family are recognized for 
their ability to produce short-chain fatty acids (SCFAs) 
through the fermentation of dietary polysaccharides [76]. 
SCFAs regulate lipid metabolism by increasing fatty acid 
oxidation and reducing lipid deposition [77]. Moreover, 
according to a study by Jiao et al. [78], a SCFA treatment 
increased the carcass weight and longissimus dorsi area 
of growing pigs, while also decreasing drip loss, a mea-
sure used to evaluate shelf life after slaughter. This indi-
cates that SCFAs can improve carcass traits and meat 
quality in pigs. Previous research has shown that the RR 
pig strain outperforms the EE strain in several meat qual-
ity traits, including backfat thickness (BFT), total mono-
unsaturated fatty acids (MUFAs), and oleic acid content 
[15]. Acetitomaculum was found to have a relevant DA 
between the EE and RR strains, with higher abundance in 
RR animals, which could be related to its superior meat 
quality.

The genus with the second-highest importance score in 
the Purebred scenario was Butyricicoccus, which showed 
a relevant higher abundance in EE animals compared to 
RR ones. It is a butyrate-producing bacterium, a SCFA 
shown to improve piglet growth performance [79] and 
to positively influence the gut health and maintenance 
of intestinal mucosa in pigs [80]. The Limosilactobacillus 
genus, the third in importance and with relevant higher 
abundance in RR animals compared to EE ones, is a 
genus of which various species were strongly suggested 
to have a probiotic potential and to enhance immuno-
logical functions [81]. Erysipelotrichaceae UCG-003, 
ranking fourth in importance, is also a significant butyr-
ate producer [82]. Additionally, this genus was found to 
have a positive correlation with body weight in broilers 
[83]. Finally, the NK4A214 group genus, belonging to 
the Oscillospiraceae family, was identified by Sebastià et 
al. [84] as having a significant negative correlation with 
myristic acid content in the Longissimus dorsi muscle of 
a Duroc × Iberian crossed population, and a significant 
positive correlation with palmitoleic acid content in their 
backfat. Notably, myristic acid exhibited significant dif-
ferences in backfat composition between the EE and 
RR maternal lines [15], while palmitoleic acid showed 
significant differences in the Longissimus thoracis mus-
cle between these lines. Despite these associations, no 
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relevant differences in the abundance of the NK4A214 
group genus were observed between the genetic groups, 
suggesting that its role in fatty acid metabolism may be 
influenced by other factors.

In the paternal scenario, where classifications achieved 
interesting results reaching an AUROC of 0.74, Acet-
itomaculum and Butyricicoccus were once again among 
the top five most important genera. The other three key 
genera were Terrisporobacter, Family XIII UCG-001 and 
Sphaerochaeta. Terrisporobacter was negatively associ-
ated with the oleic acid and MUFA (monounsaturated 
fatty acid) content of the longissimus dorsi muscle in a 
crossbred population of commercial pigs [85]. Although 
this genus showed higher abundance in EE animals, 
which aligns with previous reports indicating higher 
oleic acid levels in the RR line compared to the EE line 
[15], these findings did not extend to the EE/RR paternal 
groups. Family XIII UCG-001, second in importance, was 
positively correlated with liver-related metabolic distur-
bances in mice [86] and had a relevant higher abundance 
in EE animals, meanwhile Sphaerochaeta genus showed 
a positive correlation with palmitoleic acid content in 
the longissimus dorsi muscle of a crossbred pig popula-
tion [84]. While this fatty acid displayed significant differ-
ences between the two lines, the abundance of the genus 
itself did not vary between them.

On the other hands, this study showed a fair classi-
fication performance in the Maternal scenario, possi-
bly reflecting the complexity of maternal influences-an 
effect that may require a larger sample size to elucidate. 
Maternal effects were observed between the EE and RR 
strain in some meat quality traits such as palmitoleic acid 
and backfat thickness [15]. The top five most important 
genera in this scenario were Mogibacterium, Lachnospi-
raceae UCG-007, Colidextribacter, Erysipelotrichaceae 
UCG-003 and Eubacterium fissicatena group. All these 
important genera have been linked to lipid metabolism 
traits in the literature. Mogibacterium, was positively cor-
related with the concentrations of SCFAs in the feces of 
piglets [87]. Lachnospiraceae UCG-007 genus displayed 
a significant positive correlation with margaroleic acid, 
and Colidextribacter similarly correlated positively with 
stearic acid, in the Duroc × Iberian population [84]. 
Interestingly, while the EE maternal line exhibited a 
higher stearic acid content than the RR line [15], Colidex-
tribacter was less abundant in EE animals compared to 
RR animals. This inconsistency suggests that additional 
factors or complex interactions may influence the rela-
tionship between Colidextribacter and stearic acid. Ery-
sipelotrichaceae UCG-003 and Eubacterium fissicatena 
group genus, fourth and fifth in importance in this sce-
nario, are significant butyrate producing genera [82, 88]. 
However, further studies are necessary to properly know 
if the maternal effect is determinant in Iberian pigs.

Likewise, previous studies have demonstrated a hetero-
sis effect from the cross between EE and RR strains on 
the IMF content of the Longissimus thoracis [15]. The 
genus with the highest importance score was Colidextri-
bacter. This genus exhibited a relevant DA between the 
EE strain and the crossbred animals (ER and RE), being 
more abundant in the group of crossbred animals, and 
given that a significant positive correlation between Coli-
dextribacter and oleic acid was reported [84], this could 
be due to the increased frequency of RR line, which dem-
onstrated higher levels of this fatty acid compared to EE 
line [15]. The other important genera include Lachno-
spiraceae ND3007 and Eubacterium fissicatena group, 
both are SCFAs producing bacteria [88, 89], Fibrobacter, 
a genus involved in fiber digestion and energy metabo-
lism [90], and finally Eubacterium brachy group, which 
was found to have a positive correlation with serum HDL 
cholesterol (“the good cholesterol”) in mice [91], suggest-
ing that this taxon may play a role in promoting healthier 
lipid metabolism. However, none of these genera showed 
relevant DA between purebred and crossed animals. 
Moreover, classification performance of the Heterosis 
scenario reached only barely acceptable levels. Hence, 
the genera with the highest importance scores, might 
have been identified by chance. Together these findings 
indicate that the establishment of a relationship between 
microbiota and the heterosis effect of these strains would 
be elusive, and more research is required to disentangle 
this complex effect in Iberian pigs.

Conclusions
Results of this study suggest that besides factors 
such as age and housing environment, the genetic 
background is an important factor influencing the 
microbiota profile of Iberian pigs. Machine learning 
algorithms, particularly CatBoost and Random For-
est, demonstrated the highest classification perfor-
mance in the analysis, with SVM achieving notable 
results in specific cases such as in Purebred and Pater-
nal scenarios. The genera that exhibited DA between 
different genetic groups were also identified by the 
RF-based feature selection method as important fea-
tures and were included as predictors in one or various 
scenarios. Furthermore, most of the important genera 
were linked to SCFA production and lipid metabo-
lism, indicating that the differences in the microbial 
composition between Iberian genetic groups could be 
contributing to their differences in fat-related traits 
reported in previous works. Nevertheless, further 
investigation is needed to determine how these gen-
era might correlate with specific traits that distinguish 
these genetic groups, particularly those related to meat 
quality traits.
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