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Abstract
Background  Bovine respiratory disease (BRD) remains a significant health and economic problem to the dairy 
cattle industry. Multiple risk factors contribute to BRD susceptibility including the bacterial pathobionts Mannheimia 
haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Studies have characterized and quantified 
the abundance of these bacteria in the nasal cavity of cattle to infer and help disease diagnosis; nonetheless, there is 
still discrepancy in the results observed of when these microbes are commensal or pathogenic. Additionally, some 
of these studies are limited to a specific farm. The goal of this study is to compare the nasal microbiome community 
(diversity and composition) and the abundance of the four bacterial pathogens (by qPCR) in the nasal cavity to 
identify differences between dairy calves that are apparently healthy and those identified to have BRD. Nasal swabs 
were collected from approximately 50 apparently healthy and 50 BRD-affected calves sampled from five different 
dairy farms in the US (CA, IN, NY (two farms), and TX).

Results  Calves diagnosed with BRD in NY, and TX had lower nasal microbiome diversity compared to the apparently 
healthy calves. Differences in the nasal microbiome composition were observed between the different farms 
predicted by Bray-Curtis and weighted UniFrac dissimilarities. Commensal and pathobiont genera Acinetobacter, 
Moraxella, Psychrobacter, Histophilus, Mannheimia, Mycoplasma, and Pasteurella were prevalent in the bovine nasal 
microbiome regardless of farm or disease status. The BRD-pathobiont H. somni was the most prevalent pathobiont 
among all the samples and M. bovis the least prevalent. Only in CA was the abundance of a pathobiont different 
according to disease status, where M. haemolytica was significantly more abundant in the BRD-affected animals than 
apparently healthy animals.

Conclusions  This study offers insight into the nasal microbiome community composition in both animals diagnosed 
with BRD and healthy animals, and shows that the farm effect plays a more significant role in determining the 
microbiome community than disease status in young dairy calves.
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Background
Development of bovine respiratory disease (BRD) 
involves multifactorial interactions, including 
predisposing, environmental, and epidemiological factors 
[1, 2]. The combination of these multiple factors typically 
leads to bacterial and/or viral respiratory tract infections 
in cattle, resulting in economic losses due to increased 
morbidity, mortality, treatment costs, and reduced 
production [2–4]. In the dairy cattle industry, including 
calves and cows, respiratory disease accounts for the 
highest percentage of cattle deaths (16%) [5]. Young 
calves, particularly during the first weeks of life, are more 
susceptible to BRD due to their naive immune systems 
[6]. Currently, diagnosing BRD relies on observing 
clinical signs such as changes in feed intake, depression, 
alterations in respiratory function and elevated rectal 
temperature [7]. However, based on a meta-analysis, 
detection of BRD clinical signs has low sensitivity (62%) 
and specificity (63%) in correctly diagnosing the animals 
[8]. Studies have indicated that the composition of 
the respiratory microbiome can serve as an indicator 
of disease status [9–14]. Specifically, the bacteria H. 
somni, P. multocida, M. haemolytica, and M. bovis have 
been associated with BRD cases [9, 15–17]. However, 
since these microbes are common among both healthy 
and BRD-affected animals, they can also be referred 
to as pathobionts. When the animal immune system is 
weakened, they can proliferate in the upper respiratory 
tract and invade the lungs, causing infection [18]. 
Further investigation has identified specific serotypes (M. 
haemolytica serotypes A1 and A6, P. multocida, serotype 
A3) or strains (H. somni, strain 2336) related to BRD 
mortalities [19–24].

With advancements in sequencing technology, it 
has become possible to identify the cattle commensal 
respiratory microbial community and its role in animal 
health. Nevertheless, as more knowledge is acquired, 
studies have identified geography/farm as a driving 
factor influencing the respiratory microbiome [25]. 
For example, a study performed by Karle et al., (2019) 
[26] compared the BRD incidence in three distinct 
dairy regions in California: Northern California (9.30% 
incidence), Northern San Joaquin Valley (4.51%), and 
Greater Southern California (7.35%). Additionally, 
the authors identified that within-farm management 
practices, including colostrum management, group 
housing, and feeding salable milk, were associated with 
BRD incidence. Therefore, the current observational 
study aims to characterize the nasal microbiome, 
sampled across different farms in the U.S. and identify 
the abundance of BRD-associated pathobionts in animals 
diagnosed with BRD compared to the healthy group. 
Nasal swabs were collected from five dairy farms across 
the United States (one farm located in IN, CA, and TX 

and two farms in NY) to account for the effect of farm and 
find potential microbiome traits that are common among 
the farm as indicators of disease status. We hypothesized 
that the nasal microbiome in animals identified with 
BRD would exhibit a decrease in alpha diversity, and an 
altered community composition, including an increase in 
the abundance of BRD pathobionts as compared to the 
healthy animals.

Results
Dairy calf nasal microbiome taxonomical composition
In this study, the most prevalent taxonomic groups 
(average relative abundance > 0.02 or 2% per sample) in 
both study groups varied by farm and health status. The 
predominant phyla in the nasal microbiome of dairy 
calves were Proteobacteria (60% of the community on 
average), Firmicutes (21%) regardless of disease status 
and farm, followed by Actinobacteriota and Bacteroides 
(8%) (Fig.  1a). At the family level, Moraxellaceae (36%) 
and Pasteurellaceae (9%) were the most abundant 
in the nasal cavity (Fig.  1b). At the genus level, the 
groups Psychrobacter, Moraxella, and Acinetobacter 
were the most abundant in the nasal cavity. The 
genera Mannheimia, Mycoplasma, and Pasteurella 
were identified as prominent members of the nasal 
microbiome (even in healthy animals), with a slight 
numerical increase in relative abundance in the BRD-
affected animals compared to the healthy animals 
(Fig.  1c). Interestingly, the prevalence of Psychrobacter 
and Moraxella was 89.45% and 91.46% in the apparently 
healthy samples (n = 199), respectively. In comparison, 
the prevalence of these bacteria in BRD-affected calves 
(n = 201) was 90% for Psychrobacter and 91.54% for 
Moraxella.

The nasal microbial communities exhibited both 
similarities and differences in composition among 
various farms and between BRD-affected and 
apparently healthy groups. Genera such as Moraxella, 
Psychrobacter, and Pasteurella were abundant, yet 
variable in abundance, in all farms and disease statuses. 
Specifically, the relative abundance of Psychrobacter 
was numerically higher in the apparently healthy group 
compared to the BRD-affected group across different 
farms (Fig.  2). In contrast, the relative abundances of 
Moraxella and Pasteurella was numerically higher or 
lower in the BRD-affected group, depending on the farm. 
Notably, only in NY was the abundance of Pasteurella 
numerically increased in relative abundance in the BRD-
affected samples compared to the healthy group (Fig. 2). 
Furthermore, the relative abundances of Histophilus, 
Mannheimia, and Mycoplasma varied depending on 
disease status and farm. Mycoplasma abundance varied 
depending on disease status and farm. Histophilus 
showed higher relative abundance in TX, particularly 
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with numerically higher abundance in the BRD-affected 
group (2.15%). BRD-affected animals exhibited a higher 
numerical relative abundance of Mannheimia and 
Mycoplasma compared to the apparently healthy group 
in three of the farms. Lactobacillus generally had a low 
relative abundance. The genera Acinetobacter dominated 
the nasal microbiome specifically in the NY samples. 
Lastly, the presence of Pseudomonas was abundant in the 
CA and NY samples, with BRD-affected animals having 
higher relative abundance than the apparently healthy 
group, while this genus was less abundant in IN and TX 
(Fig. 2).

Differentially abundant taxa in the calf nasal cavity
ANCOMBC analysis was used to identify differentially 
abundant taxa between BRD-affected and apparently 
healthy in the different farms. For this analysis, only ASVs 
with a sequence count greater than 50 counts across 
all samples were selected. Results revealed that when 
including all the BRD calves in the study, BRD calves had 
significant higher abundance of one ASV classified as 
Lactobacillus and lower abundance of one ASV classified 

as Psychrobacter compared to the apparently healthy 
calves 82 (P < 0.05, Fig.  3a). When the samples were 
divided by farm, the BRD-affected calves sampled from 
the IN farm had significantly lower abundance of one 
ASV identified as Psychrobacter and one ASV classified 
as Acinetobacter compared to the healthy group (P < 0.05, 
Fig.  3b). Additionally, a total of 13 different ASVs were 
significantly increased in the BRD-affected group from 
the NY farm compared to the apparently healthy group 
(P < 0.05, Fig.  3c). From these ASVs, two of them were 
classified as Prevotella, three were identified as members 
of the Prevotellaceae family and four were classified as 
Lactobacillus species. No other significant differential 
abundant taxa were detected from the CA and TX farms.

Relative abundance of BRD pathogens in the dairy calf 
nasal cavity
Samples were divided by farm to assess the relative 
abundance of the four BRD-pathobionts and other 
bacterial genera associated with BRD outcomes 
(Biberstenia trehalosi, Mycoplasma dispar, also known 
as Mesomycoplasma dispar, Mycoplasma bovirhinis, also 

Fig. 1  Dairy cattle nasal microbiome taxa with an average relative abundance > 2% per sample at the phylum (a), family (b) and genus (c) taxonomic 
levels in BRD-affected and apparently healthy animals. If only one group (apparently healthy or BRD) surpassed the 2% threshold (red dashed line), then 
both groups were reported
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known as Mycoplasmopsis bovirhinis, and Trueperella 
pyogenes) among BRD-affected and apparently healthy 
calves (see to Additional File 1: Figure S1) The genus B. 
trehalosi was detected in all farms and disease statuses, 
with a relative abundance < 1%, except for TX, where 
it reached 6% solely in apparently healthy animals. H. 
somni and M. haemolytica had a relative abundance of 
< 1% in CA, IN, NY samples, regardless of disease status, 
except for TX, where H. somni was more abundant in 
BRD-affected animals (2%), and M. haemolytica had 
a numerically higher relative abundance in apparently 
healthy animals (5.4%). The relative abundance of 
M. dispar varied among farms, with IN, TX, and NY 

showing higher abundance in the BRD-affected group 
(> 1%), while CA had < 1% regardless of disease status. M. 
bovirhinis exhibited different relative abundance among 
farms but with similar values between apparently healthy 
and BRD-affected animals. P. multocida was the most 
prevalent BRD-pathobiont across all samples, with an 
average abundance of 3.70%, regardless of disease status. 
In IN (4.38%) and NY (3.34%) samples, BRD-affected 
animals exhibited numerically higher relative abundance 
of P. multocida. Among the farms, TX showed higher 
combined relative abundance of bacteria associated with 
BRD (> 15%), while all farms had a combined relative 
abundance of BRD associated bacteria of greater than 2%, 

Fig. 2  Genera from dairy cattle nasal swabs with an average relative abundance > 2% (red dashed line) in at least one health group (BRD-affected and 
apparently healthy cattle) from at least one of the four states. If only one group (apparently healthy or BRD) surpassed the 2% threshold (red dashed line), 
then both groups were reported
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indicating that the relative prevalence and abundance of 
these pathobionts is high (see Additional File 1: Figure 
S1).

Dairy calf nasal microbiome alpha diversity
A total of 22,198,770 sequences, classified into 12,072 
ASVs, were identified in DNA extracted from 404 
dairy nasal samples collected from CA, IN, NY, and 
TX. After the denoising step (DADA2) and removal 
of Pseudoalteromonas from the samples, two samples 
were lost (402), leaving a total of 17,043,985 sequences 
classified in 12,051 ASVs. Samples were rarified to 
12,237 sequences per sample, resulting in 10,809 ASVs 
that were used to quantify nasal microbiome alpha and 
beta diversity. The nasal microbiome richness measured 
through Observed ASVs, and evenness predicted 
by Pielou_e metrics, showed significant differences 
between apparently healthy and BRD-affected animals, 
irrespective of the farm, with BRD-affected animals 
exhibiting lower alpha diversity than the apparently 
healthy group (Fig.  4a). To assess potential effects of 
disease status on nasal cavity alpha diversity metrics, 
samples were separated by farm (Fig.  4b). In the IN 
farm, BRD-affected animals displayed significantly lower 
microbial richness and phylogenetic diversity compared 
to the apparently healthy group, with approximate 
decreases of 29% and 20%, respectively. Similar results 
were observed in NY, where BRD-affected animals had 
significantly lower microbial richness (23% decrease 
predicted by Observed ASVs) and a 10% decrease in 
nasal microbial community evenness. The farms from 
CA and TX exhibited no statistical difference between 
BRD-affected animals and their apparently healthy group 
for microbial richness (P > 0.05, Fig. 4b).

Additionally, nasal microbiome richness was mostly 
significantly different among the farms except for NY 
compared to TX. All farms showed significantly different 
phylogenetic relationships within the nasal cavity 

(Fig.  4c). Microbiome community evenness differed 
significantly between IN compared to CA, NY and TX 
(Fig.  4c). Interestingly, IN had the highest number of 
microbial species identified in the nasal cavity (Observed 
ASVs mean: 241), contrasting with CA having an 
Observed ASVs mean of 83. Additionally, phylogenetic 
diversity in the IN farm was the highest among farms, 
with a mean of 19.6 (predicted by Faith PD), while CA 
samples had the lowest phylogenetic diversity mean, 8.5, 
compared to the other farms.

Dairy calf’s nasal microbiome beta diversity
Bacterial community structure or the distance between 
BRD-affected and apparently healthy animals was not 
significantly different, as predicted by Bray-Curtis 
dissimilarity and Weighted UniFrac. Besides disease 
status, farm had a significant effect on nasal bacterial 
structure predicted by Bray-Curtis dissimilarity (F1,367 
= 27.972, R2 = 0.187, P = 0.001, Fig.  5a) and Weighted 
UniFrac (F1,367 = 23.411, R2 = 0.161, P = 0.001, Fig.  5b). 
According to these results, when analyzing bacterial 
community structure without considering phylogenetic 
relationships (using Bray-Curtis dissimilarity), 
samples from CA displayed a dissimilar community 
structure compared to those from IN, NY, and TX 
(P < 0.001). However, with the inclusion of phylogenetic 
relationships, no clear pairwise separation was observed 
among the farms based on the PCoA plots (Fig.  5b). 
Finally, a dispersion test was conducted to identify the 
dispersion of each sample from the group centroids 
(apparently healthy and BRD-affected) to identify an 
overall disease status effect in the nasal beta diversity. 
This test revealed that the dispersion of BRD-affected 
and healthy samples from the group centroids was 
significantly different for the two beta diversity metrics 
(Dispersion Weighted UniFrac: P = 0.001, Dispersion 
Bray-Curtis: P = 0.002).

Fig. 3  Differentially abundant taxa in between all the BRD-affected and apparently healthy animals (a) in the samples collected from IN (b), and in the 
samples collected from NY (c)
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Fig. 5  Beta diversity between apparently healthy separated by farm predicted by Bray-Curtis Dissimilarity (a) and Weighted UniFrac (b)

 

Fig. 4  Alpha diversity metrics between apparently healthy and BRD-affected calves (a), separated by farm (b) and between all the farms (c). Red triangles 
represent the group mean
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Prevalence and quantification of BRD-pathobionts in the 
calf nasal cavity
Quantification of the four BRD-pathobionts, H. somni, M. 
bovis, M. haemolytica, and P. multocida, was conducted 
via qPCR using DNA extracted from the calf nasal swabs. 
Results from this study indicated that the bacterium H. 
somni is the most prevalent BRD-pathobiont regardless 
of the farm, with approximately 70% of the samples 
testing positive for the bacterium (Fig.  6), followed by 
P. multocida and M. haemolytica. H. somni was more 
prevalent in apparently healthy animals, except in the 
TX samples. M. bovis was the least prevalent bacterium, 

with a prevalence of less than 25% among all farms and 
regardless of disease status. Additionally, differences 
in the prevalence of BRD-pathobionts were observed 
among the farms and disease status. The prevalence of 
M. bovis and M. haemolytica was numerically higher in 
BRD-affected animals from CA, IN, and TX, except for 
samples collected from NY. However, only the prevalence 
of M. haemolytica in the samples collected from CA was 
significantly different between BRD-affected and the 
apparently healthy group (P = 0.002); no other significant 
differences were detected in the BRD-pathobiont 

Fig. 6  Prevalence of the BRD-pathobionts between apparently healthy and BRD-affected dairy calves sampled from CA, IN, NY, and TX farms. Prevalence 
values represent only the calves that tested positive (present) for each bacterium
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prevalence between disease statuses and the different 
farms (Fig. 6).

The average abundance of H. somni among the 
farms and disease status was approximately 3.73 log10 
per sample, M. bovis was 2.99 log10 per sample, M. 
haemolytica was 3.12 log10 per sample, and P. multocida 
was 3.61 log10 per sample. When separated by farm 
and disease statuses (Fig. 7), the abundance of H. somni 
and P. multocida ranged between 3 and 4 log10, while 
the abundance of M. bovis and M. haemolytica ranged 
between 2 and 3 log10. Statistical differences were 

identified in the abundance of M. haemolytica from the 
CA samples. Specifically, BRD-affected animals had 
higher abundance of M. haemolytica (copy number log10: 
3.74 ± 1.62) compared to the apparently healthy animals 
(copy number log10: 2.94 ± 1.50), with no other significant 
differences detected.

A relative abundance test was used to discern the 
abundance of each BRD-pathobiont (H. somni, M. bovis, 
M. haemolytica and M. bovis) relative to the total nasal 
bacterial community and to the sum of the four BRD 
pathobionts. Differences in the relative abundance of M. 

Fig. 7  BRD-pathobiont abundance (log10) between disease status and divided by farm. Gold and blue triangles represent the group mean
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bovis and P. multocida compared to the total bacterial 
abundance, based on the 16 S rRNA gene abundance per 
sample, were identified in the NY samples (see Additional 
File 1: Figure S2a, b). On the other hand, samples from 
CA showed that the relative abundance of M. haemolytica 
compared to the total abundance of the four pathobionts 
was significantly higher in the BRD-affected group 
compared to the healthy group (see Additional File 1: 
Figure S2c). No significant differences in the abundance 
of the BRD-pathobionts and their relative abundance 
were identified in the samples collected from IN and 
TX farms. Quantification of the total nasal bacterial 
abundance in the samples collected from CA, IN, NY, 
and TX was performed via qPCR. In the study, the total 
bacterial abundance determined by the abundance of the 
16  S rRNA gene was significantly different between the 
farms (see to Additional File 1: Figure S3a), except for 
the bacterial abundance between IN compared to NY. 
Interestingly, CA samples had a higher mean bacterial 
abundance than the other farms. Lastly, differences in 
the total bacterial abundance between BRD-affected and 
apparently healthy were detected in the NY samples, 
with healthy animals having significantly higher total 
bacterial abundance than the BRD-affected animals (see 
to Additional File 1: Figure S3b). No other significant 
differences in the total bacterial abundance were detected 
in the study.

Prevalence and quantification of P. multocida and M. 
haemolytica pathogenic serotypes
Nasal swabs collected from IN (n = 83) and NY (n = 74) 
farms underwent quantification of P. multocida serotype 
A and M. haemolytica serotype A1 and A6 to discern 
differences in abundance between apparently healthy and 
BRD-affected calves. In the IN samples, the prevalence 
of M. haemolytica A1 was approximately 58% in the 
apparently healthy group and 63% in the BRD-affected 
group, while the prevalence of M. haemolytica A6 was 

69% in the apparently healthy and 57% in the BRD-
affected group. The prevalence of P. multocida serotype 
A was closely similar between apparently healthy animals 
(67%) and BRD-affected animals (64%) (see Additional 
File 1: Figure S4). Unfortunately, no significant differences 
were observed in the abundance of P. multocida and 
M. haemolytica pathogenic serotypes based on disease 
status (P > 0.05). In the case of the NY samples, the 
prevalence of M. haemolytica A1 (44% and 31%) and A6 
(59% and 34%), as well as P. multocida A (49% and 46%), 
had a higher prevalence in apparently healthy animals 
compared to the BRD-affected animals, respectively 
(see Additional File 1: Figure S4). The IN samples had a 
higher average abundance of M. haemolytica A1 (3.38 
log10 per sample) than A6 (2.74 log10 per sample), while 
NY samples exhibited a similar abundance between both 
serotypes, approximately 2.69 log10 per sample (Table 1). 
The abundance of P. multocida serotype A was similar 
regardless of farm and disease status (Table  1). No 
significant differences were detected in the abundance 
and prevalence of each serotype between disease statuses 
(P > 0.05).

Discussion
Bovine respiratory disease (BRD) is an ongoing 
health and economic issue in the dairy and beef cattle 
industries, and it is caused by multiple factors such as 
predisposing, environmental, and epidemiological factors 
[2]. Diagnosis and treatment have proven challenging 
for producers, as BRD diagnosis predominantly relies 
on observation of visual clinical signs, yet not all animals 
exhibit these signs [7]. Previous studies have recognized 
the potential of using the bovine nasal microbiome to 
aid in BRD identification [9–11, 13, 14]. Consequently, 
this study sought to characterize the nasal microbiome 
community in dairy calves displaying BRD clinical signs 
and their apparently healthy counterparts, utilizing 
samples from different dairy farm locations in the USA 

Table 1  Abundance of the M. Haemolytica and P. Multocida pathogenic serotypes in IN and NY and between disease status
Farm Serotype Status n Mean SD SE 25%* 75%*
IN Mh-A1 Healthy 36 3.31 1.34 0.22 2.86 3.76

BRD 47 3.46 1.45 0.21 3.03 3.88
Mh-A6 Healthy 36 2.78 0.42 0.07 2.64 2.93

BRD 47 2.69 0.46 0.07 2.55 2.82
Pm-A Healthy 36 3.75 1.30 0.22 3.31 4.19

BRD 47 3.61 1.30 0.19 3.23 3.99
NY Mh-A1 Healthy 39 2.80 1.08 0.17 2.45 3.15

BRD 35 2.61 0.91 0.15 2.30 2.93
Mh-A6 Healthy 39 2.78 0.56 0.09 2.60 2.96

BRD 35 2.57 0.56 0.10 2.38 2.77
Pm-A Healthy 39 3.38 1.20 0.19 2.99 3.77

BRD 35 3.42 1.33 0.22 2.96 3.87
*25% and 75% quartile, Mh-A1 = M. haemolytica serotype A1, Mh-A6 = M. haemolytica serotype A6, Pm-A = P. multocida serotype A
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(CA, IN, NY, and TX). The goal was to identify potential 
differences in the commensal and BRD-pathobiont 
microbiomes between healthy and BRD-affected calves. 
Our results indicate that nasal alpha diversity emerged 
as an indicator of disease status, but this effect was not 
consistent on all farms. The nasal microbial community 
structure remained similar regardless of disease status. 
Nasal microbiome diversity differed by farm. In some 
cases, specific members of the nasal microbiome 
were linked to disease status. Moreover, among the 
BRD pathobionts, H. somni exhibited the highest 
prevalence across all farms, followed by P. multocida, 
M. haemolytica, and M. bovis. However, no significant 
differences in the abundance of BRD pathobionts were 
observed between apparently healthy and BRD-affected 
cattle, except for M. haemolytica in samples from CA. 
Additionally, no significant difference in the abundance 
of specific pathobiont serotypes (M. haemolytica A1 and 
A6, and P. multocida serotype A) were detected between 
BRD and apparently healthy groups. This study proves 
valuable for the BRD field, particularly in the dairy cattle 
industry, by identifying core members of the calf nasal 
microbiome community regardless of the farm and 
potential traits that could aid in distinguishing disease 
status.

Nasal microbiome taxonomy composition revealed 
prevalent members of the dairy calf nasal microbiome
Prevalent members of the dairy calf microbiome were 
identified regardless of disease status and farm location. 
In this study, the nasal microbiome was dominated by 
two members of the Moraxellaceae family, Moraxella 
and Psychrobacter, with Pasteurella present at a lower 
relative abundance. Psychrobacter, a known member 
of the bovine nasal and nasopharyngeal microbiomes, 
has been identified in various animal microbiomes, 
but also in non-host environments like seawater, sea 
ice, marine sediment, glacial ice, and permafrost soil. 
While Psychrobacter species have been recovered from 
mammalian hosts, including marine mammals, birds, 
and fish, their capability to cause disease is rare, and the 
factors influencing infection remain unclear [27]. This 
microbe has occasionally been associated with BRD 
occurrences [9, 28–30]. But studies have also suggested 
that it possesses antagonistic effect on Mycoplasma 
abundance [9, 31]. While Psychrobacter inhibitory 
capacities have not been tested against BRD-pathobionts, 
one study tested the growth inhibitory capacities of 
Psychrobacter in gram negative human pathogens 
(Serratia marcescens, Pseudomonas aeruginosa PAO1, 
Vibrio parahemolyticus and V. vulnificus) [32]. The 
authors observed that in vitro treatment of Psychrobacter 
inhibits the biofilm formation. Additionally, in the case of 
P. aeruginosa PAO1, Psychrobacter inhibits the growth, 

motility and biofilm formation in a concentration 
dependent manner, highlighting the inhibitory capacities 
of this microbe against gram negative bacteria [32]. 
Intriguingly, in our samples Psychrobacter was one of 
the most prevalent and abundant genera in the dairy 
nasal samples, but it only had numerically higher relative 
abundance in apparently healthy animals compared to 
the BRD-affected group.

The relative abundance of Moraxella varied by farm, 
particularly with numerically higher abundance (10–
20%) in CA, IN, and TX. The role of Moraxella in bovine 
respiratory disease is still unclear and requires further 
investigation. Some studies have identified this microbe 
as a commensal member of the cattle upper respiratory 
microbiome [27, 33], while others have shown that 
Moraxella was associated with BRD development [31, 
34, 35], with high abundance immediately following 
transport in heifers that subsequently developed BRD 
[9–14] or present in the nostrils of BRD-affected cattle 
[9].

Nasal alpha diversity differed between apparently healthy 
and BRD-affected dairy calves, in some farms
In this study, the nasal microbiome in the BRD-affected 
animals presented a lower number of observed ASVs 
(richness) and Pielou Evenness, irrespective of the farm. 
After separating the samples by farm, BRD-affected 
calves in IN and NY had lower alpha diversity metrics 
than apparently healthy animals. Reduction in alpha 
diversity, particularly microbial richness and evenness, 
has been reported in the upper respiratory tract of BRD-
affected cattle in previous studies [11, 36, 37]. A study 
by Centeno-Martinez et al. (2022) [9] also reported a 
20% decrease in nasal microbiome richness in BRD-
affected Holstein beef steers, similar to our findings here 
where microbial richness (Observed ASVs) in BRD-
affected animals from IN and NY decreased by 29.8% 
and 24%, respectively. Thus, apparently healthy animals 
harbored a greater number of microbial species within 
the nasal community compared to those affected by BRD. 
Moreover, BRD-affected animals from IN experienced 
an approximate 20% decrease in phylogenetic diversity 
compared to the apparently healthy group. Similar 
trends were noted in Centeno-Martinez et al. (2022) 
[9], where the BRD-affected group exhibited an 11% 
decrease in phylogenetic diversity. Previous studies have 
associated higher microbiome diversity with ecosystem 
stability and resistance to pathogen colonization [38, 
39]. Consequently, the higher observed microbial 
richness and phylogenetic diversity in apparently 
healthy animals, particularly in IN and NY, may confer 
a more stable community and potential resistance to 
pathogen colonization [39, 40]. However, it is crucial to 
note that these differences are farm specific. Additional 
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confounding factors may exist, such as, age, time of 
sampling, effect of housing (individual/groups), stage 
(pre-weaned/post-weaned), and breed.

Similar BRD-pathobiont abundance and serotypes in BRD-
affected and apparently healthy animals
Development of BRD has been linked to the presence 
of multiple pathogens, including the bacterial species 
H. somni, P. multocida, M. haemolytica, and M. bovis 
[16, 41], in the upper and lower respiratory tract, and 
specifically lung tissue samples from BRD mortalities 
[16, 41]. Due to their significance in BRD development, 
various studies have focused on quantifying the 
abundance of these bacteria in the upper respiratory 
tract, aiming to develop BRD diagnostic tools and 
identify differences between cattle diagnosed with BRD 
and healthy cattle [9, 10, 13, 14, 42–45]. Interestingly, 
in the current study, no significant differences were 
detected in the prevalence or abundance of pathobiont 
between farms and disease status in dairy calves, except 
at one farm (CA) for one pathobiont (M. haemolytica). 
Among all the samples, the average abundance of the 
BRD-pathobionts in the nasal cavity is between 102 
and 104 per sample (depending on the farm), similar to 
previous studies [9, 43].

As a secondary test to identify differences in nasal 
pathobiont carriage for disease detection, an abundance 
analysis of the most pathogenic serotypes within M. 
haemolytica (serotype A1 and A6), and P. multocida 
(serotype A) [19–21, 46], was conducted on samples 
collected from IN and NY. Nevertheless, the abundance 
of these microbes in the calf nasal cavity was similar. 
Results from this study indicate that the abundance of 
BRD-pathobionts in the nasal cavity is not significantly 
different between BRD-affected and apparently healthy 
calves, and these results are consistent regardless of the 
farm.

It is unclear why the prevalence and abundance of 
BRD-pathobionts in the nasal cavity of dairy calves is not 
higher in in dairy calves with BRD than in healthy calves. 
It is possible that the age of the animal is important to 
the use of the nasal pathobionts to predict disease. 
The animals in the current study were mostly less than 
two months old. Our previous study in 6–7 month-
old Holstein beef steers showed clear differences in 
pathobiont abundance between healthy and BRD animals 
[9]. In another study, the authors observed higher 
abundance of the H. somni, and M. haemolytica in the 
BRD-affected calves compared to the healthy calves; 
however, this study used bronchioalveolar lavage rather 
than nasal samples and the dairy calves were 1–5 months 
old [47]. Few other studies of the young dairy calf nasal 
microbiome are available. Previously, we performed 
a short study on the progression of the dairy calf nasal 

microbiome from 1 to 4 weeks of age and found little 
relationship between the relative abundance of BRD 
pathobionts and disease status [48]. Thus, more research 
needed to identify how the dairy nasal microbiome 
differs between BRD-affected and apparently healthy 
calves and how this relationship changes as animals grow 
older. Alternatively, there are also many other potential 
confounding factors between studies in beef and dairy 
cattle.

Nasal microbiome taxonomy is significantly altered by 
geographic location
A notable geographic effect was observed in shaping 
the nasal microbiome community, aligning with results 
from Chai et al. (2022) [29] in their investigation of 
the bovine respiratory microbiome across different 
locations in China and Canada. The authors compared 
nasopharyngeal samples collected from two geographic 
locations: samples from Canada had a higher relative 
abundance of the bacterial species Burkholderia 
while the two cities in China had a higher relative 
abundance of Moraxella catarrhalis, Psychrobacter sp., 
Corynebacterium species, and Mycoplasma conjunctivae. 
Additionally, the nasopharyngeal microbiome of 
the Canadian samples was mainly composed of 
Proteobacteria members while the two cities in China 
were mostly composed of Proteobacteria and Firmicutes. 
Even though these studies targeted the nasopharyngeal 
microbiome community, a similar geographic effect 
on the bovine nasal microbiome community has been 
detected in previous studies, indicating the importance 
of including the geography during data analysis [31, 49]. 
However, these studies did not mention the impact of 
farm management, diet, breed, or other factors that could 
be different between farms in addition to the influence of 
geography.

Nasal bacterial community structure is similar between 
apparently healthy and BRD-affected dairy calves
Analysis of nasal microbial structure, or beta diversity, 
provides insight into the similarity or dissimilarity of 
the microbiome community between apparently healthy 
and BRD-affected animals. Dysbiosis, or disruption 
in microbial community structure, is sometimes 
associated with disease incidence and progression [50, 
51]. Therefore, our study aims to identify any nasal 
microbiome disruption due to disease status. Based on 
our findings, the nasal microbiome community structure 
did not differ between BRD-affected and apparently 
healthy animals. Additionally, differences were observed 
between farms, irrespective of disease status. Particularly, 
CA samples exhibited a dissimilar microbiome 
community structure compared to the other farms, as 
predicted by Bray-Curtis dissimilarity. Similar to other 
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studies, geography has been detected to play a role in 
determining the microbiome composition [25, 50]. In a 
human study, geographic location (14 districts within one 
province in China) had the strongest association with the 
human gut microbiome composition [50]. The authors 
used a machine model method to predict an association 
between the host individual’s metabolic health (disease 
classification) and their gut microbiome data, resulting 
in low prediction accuracy. However, when samples 
were divided according to geographic location, disease 
classification substantially improved. These results 
underscore the importance of accounting for geographic 
effects and avoiding extrapolation of results to prevent 
inaccurate predictions.

Despite the strengths of this study, experimental 
limitations may limit our ability to identify differences 
between healthy and BRD animals, many of which are 
common to most BRD studies. First, we collected nasal 
swabs which do not completely represent the lung 
microbiome [27]. Second, we focused on bacteria, while 
the presence of viruses and fungi have also been linked 
to disease development [41, 52–55]. Third, animals 
were only visually classified as BRD or healthy, which 
can misidentify the BRD status of animals [8]. Fourth, 
animals were managed differently in different farms, 
including housing, which could alter BRD transmission 
between animals [56]. Fifth, we did not measure the 
immune status of the animals, which may allow some 
animals to withstand pathogen invasion of the mucosal 
surface [18]. On the other hand, we feel that the strengths 
of this study were the number of samples (about 400), 
sampling five independent farms, quantifying the 
abundance of BRD pathobionts by qPCR, and use of 
nasal swab samples that could be easily collected by any 
farm staff. Notwithstanding the limitations of the study 
and contrary to our initial hypothesis, our study seems 
to make clear that BRD development in dairy calves is 
not indicated by an increase in pathobionts in the nasal 
passage or by an overall disruption or dysbiosis of the 
bovine nasal microbiome. Thus, further studies, like the 
current one, are needed to deepen the understanding of 
how additional animal factors (including immune status) 
influence the respiratory microbiome.

Conclusions
BRD-affected calves from the farms in IN and TX had 
lower alpha diversity compared to their apparently 
healthy group. The bovine nasal bacterial community 
structure was different between farms, but not by 
disease status. This result indicates that farms, including 
potential confounding factors like age, environmental 
factors, housing, or breed may influence the nasal 
microbial structure. Contrary to our hypothesis, the 
abundance of the BRD-pathobionts and their serotypes 

was not different between BRD-affected and apparently 
healthy animals. Both groups share a similar pathobiont 
carriage, but their values were dependent on farm. 
Further research is essential to comprehend the temporal 
changes in the microbiome, including the impact of 
different farm management observed in this study.

Materials and methods
Cattle nasal swab collection
Animal Population
Nasal swabs were collected from five different dairy 
farms (CA, IN, NY, and TX) in the US from 2020 to 
2022, with each animal being sampled once. Two dairy 
farms were sampled in NY located less than 10 miles 
apart from each other. These two farms were grouped 
together due to their geographic proximity and similarity 
in microbiome composition (Additional File 1, Fig. 
S6). Approximately 100 samples were collected from 
each farm, comprising 50 samples from visually healthy 
animals and 50 from BRD-affected animals. However, 
due to sample processing and missing information, 
some samples were not included in the study. Animal 
selection was carried out using the DART method as 
specified in Centeno-Martinez et al., (2022) [9]. The 
DART method employs visual clinical signs such as 
depression, appetite loss, respiratory character change, 
and rectal temperature (> 103  °F) as criteria [41]. Once 
an animal was visually identified as BRD-affected by the 
farm personnel following the DART method, one or two 
healthy calves were selected based on the absence of BRD 
visual clinical signs. Unfortunately, the measurement of 
rectal temperature > 103 °F was not always an indicator of 
disease, as some visually healthy animals also presented 
rectal temperature > 103 °F. Therefore, rectal temperature 
was not included as a factor to determined disease status. 
Information on the collected animal data for each of the 
farms is found in Table 2.

Cattle nasal swab collection and DNA extraction
For the study, one double swab was collected from 
each animal sampled from CA, IN, NY, and TX. After 
collection, the samples were kept in the refrigerator 
at the farm facilities before being shipped to the lab. 
Samples were shipped within 5 days of collection and 
processed within 7 days of collection. Nasal swabs were 
processed following the protocol by Centeno-Martinez et 
al. (2022) [9]. Total DNA extraction was carried out using 
the DNeasy Blood and Tissue Kit (Qiagen, Germantown, 
MD, United Farms) following the protocol described 
by Centeno-Martinez et al. (2022) [9], adapted from 
Holman et al. (2015) [57]. The 16  S rRNA library pool 
was prepared using the extracted DNA to characterize 
the total bacterial community present in the nasal 
cavity following the Kozich et al. (2013) [58] protocol. 
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PCR amplification was performed using AccuPrime Pfx 
SuperMix (Thermo Fisher Scientific MA, USA). PCR-
grade water was used as the negative control, and a mock 
community containing 20 known bacterial DNA strains 
served as the positive control (20 Strain Even Mix; ATCC. 
MSA-1002TM). PCR amplification was verified using gel 
electrophoresis, and the amplified DNA was normalized 
using the SequalPrep Normalization Kit. A total of 5  µl 
of the normalized DNA per sample was combined into 
a pool and sent to the Purdue Genomic Core Facility for 
sequencing via Illumina MiSeq (2 × 250 paired-end).

16 S rRNA gene bioinformatic analysis
The raw sequences obtained from the 16  S rRNA gene 
sequencing were analyzed using Quantitative Insight Into 
Microbial Ecology (QIIME2) v.2022.8. The raw forward 
and reverse sequences were trimmed using DADA2 to 
obtain sequences with a quality > Q30 [59]. All sequences 
were clustered into Amplicon Sequence Variants 
(ASVs) with 100% similarity. Taxonomy was assigned 
using SILVA 138, 515/806 region database. An analysis 
of composition of microbiome with bias correction 
(ANCOM-BC) was performed to identify differentially 
abundant taxa between healthy and BRD animals in 
dairy farms. This method accounts for the underlying 
compositional characteristics of the microbiome 
community [60, 61]. For this step, the ASV table was 
filtered to remove ASVs with sequence counts  < 50 
across all samples and a significant threshold of 0.05 was 
used to detect the significant differential abundant taxa.

To calculate alpha and beta diversity, the ASV table 
was rarefied to 12,237 sequences per sample. During 
subsampling, some samples were lost due to low sequence 
count (total dairy samples = 404, after rarefying = 368, 

Table  3). Alpha diversity, which measures community 
richness and evenness, was estimated in QIIME2 using 
Observed OTUs, Chao1 to determine richness, and 
Faith’s phylogenetic diversity (Faith PD) and Pielou 
Evenness to determine community evenness [62–67]. 
Beta diversity, indicating microbial community structure, 
was determined using the Bray-Curtis Dissimilarity 
Index and Weighted UniFrac (incorporates phylogenetic 
diversity) methods and plotted as principal coordinate 
analysis (PCoA) using RStudio [68]. To test community 
structure, a permutational multivariate analysis of 
variance test (PERMANOVA; P ≤ 0.05) was applied to the 
dairy samples using the function ‘adonis2’ from the vegan 
package [69]. Beta diversity was compared between BRD-
affected and visually healthy animals across all different 
farms. To account for the farm effect, we included 
disease status as a between factor and farm as a within 
factor using the function ‘strata’. If a significant result was 
observed, a pairwise comparison analysis (P ≤ 0.05) using 
the function ‘pairwise.adonis2’ was applied. In addition, a 
dispersion test was performed to determine the distance 
of each sample from the group centroid (BRD or healthy) 
using the vegan package following a permutation test of 
multivariate homogeneity of group dispersion [69].

DNA extraction and sequencing controls analysis
To verify PCR amplification and sequencing accuracy, 
a positive control comprising 20 known bacterial DNA 
strains was included as a mock community (ATCC 
MSA-1002TM). The mock community was sequenced 
concurrently with the dairy samples. The raw mock 
community sequences were analyzed separately from 
the samples to assess amplification and sequence 
quality. Using QIIME2 v.2022.8, we compared the mock 
sequences with a reference file containing the 16 S rRNA 
gene sequences of the 20 known bacterial strains. The 
forward and reverse sequences were trimmed to retain 
sequences with a quality score > 30. To assess sequencing 
quality, we utilized the ‘evaluate_seqs’ function in 
QIIME2, aligning the observed sequences in the mock 
samples with the mock reference file and determining 
matches and mismatches.

In addition to the positive control utilized in the 
PCR amplification and sequencing stage, two types 

Table 2  Dairy farm data
Farm Breed Age Housing Stage Temp/Sampling
CA1 Holstein < 2 months Individual hutches Pre-weaned > 37 °C
IN2 Holstein 1–4 months Individual hutches (< 8 weeks old), group housing (> 8 weeks old) Pre and post weaned > 0 °C
NY3 Holstein Calves and cows Individual and group housed Calves and fresh cows 21 °C
TX1 Jersey < 2 months Individual hutches Pre-weaned < 0 °C
1 Animals selected from the same farm and all of them were calves
2 Animals selected from the same farm and some samples were collected from cows (Cow samples = 6, calves samples = 91)
3 Samples collected from two different farms (Farm 1 = 70 samples, Farm 2 = 31 samples)

Table 3  Summary of the total nasal swabs data collection from 
four different dairy farms in the US before and after rarefication

Dairy Farm Samples Before 
Rarefying

Dairy Farm Samples After 
Rarefying

Farm Healthy BRD Farm Healthy BRD
CA (n = 96) 47 49 CA (n = 94) 46 48
IN (n = 97) 47 50 IN (n = 90) 44 46
NY (n = 101) 50 51 NY (n = 98) 48 50
TX (n = 110) 55 55 TX (n = 86) 44 42
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of negative controls were incorporated: empty tubes 
and PCR water. The empty tubes served as samples 
processed concurrently with the nasal swab samples 
during DNA extraction, representing the DNA extraction 
kit negative control. This facilitated the identification 
of potential contaminants in the reagents used for 
extraction, ensuring the integrity of the extracted DNA. 
The PCR water served as the negative control during 
the PCR amplification step. Both empty tubes and PCR 
water underwent sequencing simultaneously with the 
positive control and dairy samples. Raw sequences 
obtained from the empty tubes and PCR water were 
analyzed separately from the positive control and dairy 
samples using QIIME2, following the aforementioned 
procedure. Similarly, the forward and reverse sequences 
were trimmed to eliminate low-quality sequences (< 30). 
Finally, taxonomy was assigned using SILVA 138, 515/806 
region database.

Sample contamination during DNA extraction and 
sequencing can stem from various sources, such as 
sample collection, laboratory equipment, DNA extraction 
reagents, or contaminated water. To assess the potential 
presence of contaminants in the extracted DNA, we 
followed the protocol outlined by Centeno-Martinez et 
al., (2022) [9], utilizing the observed sequences in the 
mock community and the negative controls (empty tubes 
and PCR water). If an amplicon sequence variant (ASV) 
was identified as contamination in the samples, it was 
subsequently eliminated. In this study, one ASV classified 
as Pseudoalteromonas was identified as a contaminant 
and consequently removed from the samples due to its 
presence in both the DNA extraction negative controls 
(empty tubes) and the dairy nasal swabs. Following the 
removal of Pseudoalteromonas, three samples were 
excluded due to the high abundance of these ASVs in the 
samples (see Additional File 1: Figure S5).

Quantification of BRD-pathobionts in the cattle nasal 
cavity
Extracted DNA from the BRD-pathobionts P. multocida, 
H. somni, M. haemolytica, and M. bovis were used 
to construct a qPCR standard curve to quantify its 
abundance in the cattle’s nasal cavity following the 
protocol by Centeno-Martinez et al. (2022) [9]. DNA 
was extracted from pure isolates of P. multocida, H. 
somni, and M. haemolytica obtained from the Indiana 
Animal Disease Diagnostic Laboratory (ADDL) at 
Purdue University, and DNA from M. bovis was obtained 
from M. bovis strain 25523 (ATCC). Primers utilized to 
target the presence of the BRD-pathobionts are listed in 
see Additional File 1: Table S1. To construct the qPCR 
standard curve, PCR assays were conducted to generate 
the BRD-pathobionts gene amplicons in a 50 µl volume 
comprising 25  µl of iTaq™ Universal Probes Supermix 

(BioRad, CA, USA), 12 µl Primer/Probe mix (refer to see 
Additional File: Table S1) with a primer concentration of 
0.3 µM and a probes concentration of 0.1 µM, 10  µl of 
nuclease-free water, and 2.5  µl of DNA template. PCR 
assays were carried out using the Eppendorf Mastercycler 
Gradient Model 533, with cycling conditions aligned 
with the protocol by Centeno-Martinez et al. (2022) [9]. 
PCR-grade water served as the negative control, and PCR 
amplification was verified through gel electrophoresis. 
Subsequent to obtaining the gene amplicons for each of 
the BRD-pathobionts, the amplicons were cleaned and 
purified using the Monarch PCR and DNA cleanup kit 
(New England BioLabs, MA, USA).

A 9-fold serial dilution (108 to 100) was generated for 
each of the BRD-pathobiont amplicons to generate the 
qPCR standard curve. The qPCR technical replicate 
assays were performed following Centeno-Martinez et al. 
(2022) [9] protocol. In brief, a total volume of 20 µl was 
prepared for each BRD-pathobiont assay. Each reaction 
consisted of 10  µl of iTaq Universal Probes Supermix 
(BioRad, CA, USA), 5  µl of Primers/Probes with the 
same concentration as mentioned earlier, and 5  µl of 
each BRD-pathobiont amplicon. All qPCR assays were 
executed in the CFX96 Real-Time System Thermal Cycler 
(BioRad, CA, USA), and the cycling conditions for each 
BRD-pathobiont were consistent with those described in 
Centeno-Martinez et al., (2022) [9]. The standard curve 
was constructed by linear regression of the technical 
triplicate average cycle quantification (Cq) for each 
sample and log10 amplicon copies/µl from each dilution. 
One dilution employed for generating the standard curve 
for each bacterium served as the positive control, and 
PCR-grade water was used as the negative control in each 
of the qPCR triplicates.

Quantification of the total bacteria abundance in the cattle 
nasal cavity
Quantification of the total bacteria found in the cattle’s 
nasal cavity was performed by targeting the bacterial 16 S 
rRNA gene. A pool of extracted DNA from various nasal 
swabs served as the nucleic acid template for the PCR 
reaction. The 16 S rRNA gene PCR was carried out using 
the Eppendorf Mastercycler Gradient Model 533. Two 
bacteria-specific primers, 8  F and 1492R, were selected 
to target the 16  S rRNA gene, which was subsequently 
utilized as the qPCR nucleic acid template [70]. PCR 
assays were conducted in a 50  µl volume reaction, 
comprising 42.5  µl of AccuPrime™ Pfx SuperMix 
(Thermo Fisher Scientific, MA, USA), 2.5  µl of each 
primer (8 F and 1492R), 1.5 µl of nuclease-free water, and 
1 µl of DNA template. PCR cycling conditions and primer 
concentrations were set as per Kozich et al. (2013) [58]. 
A mock community (20 Strain Even Mix 138 Genomic 
Material, ATCC. MSA-1002TM) and PCR-grade water 



Page 15 of 19Centeno-Delphia et al. Animal Microbiome            (2025) 7:16 

were included as the positive and negative controls, 
respectively, during the PCR step. PCR amplification 
was verified through gel electrophoresis. Finally, the 16 S 
rRNA gene amplicons were purified using the Monarch 
PCR and DNA Cleanup kit (New England BioLabs, MA, 
USA).

Amplicons of the 16 S rRNA gene underwent a 9-fold 
dilution (108 to 100) to generate the standard curve. 
qPCR assays were conducted in a 20  µl total volume, 
consisting of 10 µl LightCycler 480 SYBR Green I Master 
(Thermo Fisher Scientific, PA, USA), 5  µl of primers 
(universal primers 1132 F and 1108R), and 5 µl of the 16 S 
rRNA amplicon. The conditions for 16  S rRNA qPCR 
and primer concentrations were in accordance with the 
protocol by Leigh et al. (2007) [71], and the assays were 
executed in a CFX96 Real-Time System Thermal Cycler 
(BioRad, CA, USA). Standard curve generation, along 
with the inclusion of positive and negative controls, 
followed the previously described procedure.

The quantification of BRD-pathobionts’ abundance 
in the nasal cavity relied on the prevalence of each 
bacterium. The cut-off limit of detection (LOD) value 
determined the classification of samples as positive (Cq 
value below LOD) or negative (Cq value above LOD) 
for each bacterium (see Additional File: Table S2). 
Additionally, the relative abundance of BRD-pathobionts 
was calculated by dividing the copy number of each 
bacterium by the 16 S rRNA gene copy number obtained 
per sample (labeled as BRel) and by the sum of the copy 
numbers of all four bacteria (PRel). This analysis allowed 
the identification of the relative abundance of each 
bacterium concerning the total bacterial community in 
the sample (BRel) and the relative abundance of each 
bacterium concerning the other BRD-pathobionts (PRel).

Quantification of M. haemolytica and P. multocida 
pathogenic serotypes
We quantified and determined the abundance of BRD-
pathobionts, specifically M. haemolytica serotype A1 and 
A6, and P. multocida pathogenic serotype A. In a prior 
study conducted by Sheets (2023) [72] and Wickware 
(2022) [73], DNA was extracted from M. haemolytica and 
P. multocida isolated from lung tissue samples collected 
from cattle necropsies. These isolates underwent 
whole-genome sequencing for genome identification, 
annotation, and serotyping confirmation. Utilizing P. 
multocida and M. haemolytica genome sequences as 
input, the authors predicted serotypes using a server 
and database created by Christensen et al. (2021, 2022) 
[74, 75]. Details regarding the M. haemolytica and P. 
multocida isolates chosen for the test are available in 
Additional File: Table S3. P. multocida predicted serotype 
A served as the target, and P. multocida predicted 
serotype D was included as the negative control. 

Additionally, M. haemolytica predicted serotype A1 and 
A6 were considered targets, while isolates predicted 
as A2 and A5 were utilized as negative controls. Our 
expectation was to develop BRD-pathogen-specific qPCR 
capable of distinguishing the presence of P. multocida 
(serotype A) and M. haemolytica (serotype A1 and A6) 
pathogenic serotypes from non-pathogenic serotypes: P. 
multocida serotype D and M. haemolytica serotype A2 
and A5.

Using aseptic techniques, frozen isolates of M. 
haemolytica and P. multocida pathogenic and non-
pathogenic subspecies were streaked on blood-agar 
medium (Tryptone Soya Agar with sheep blood, 
Thermofisher Scientific, Waltham, MA, USA). 
Incubation occurred in a microaerophilic chamber with 
5% CO2 at 37 °C for 18 to 24 h. If growth was observed, 
a single colony was subcultured in liquid culture media 
containing 2.8% Brucella Medium Base (Thermofisher 
Scientific, Waltham, MA, USA) at 37  °C with agitation 
just below 200 rpm. Bacterial cells from the liquid culture 
were replated (blood agar medium) and subcultured 
in new liquid culture media (Brucella Medium 
Base) following the previously described conditions. 
This process was repeated twice to ensure proper 
identification of the isolates. After the second liquid 
culture, 1  ml of each pathobiont and non-pathobiont 
serotype liquid culture was centrifuged at 6000 x g for 
10 min. The supernatant was removed, and the pellet was 
used to extract bacterial DNA according to the protocol 
by Centeno-Martinez et al., 2022 [9].

A secondary BRD-pathobiont serotype identification 
step was executed via Sanger sequencing. The extracted 
DNA of M. haemolytica (Mh18, Mh19, Mh27, and Mh70) 
and P. multocida (Pm63, Pm85, and Pm103) pathogenic 
and non-pathogenic isolates were used to generate 16 S 
rRNA amplicons using the same PCR protocol and 
primers mentioned in the 16  S rRNA qPCR step. Each 
pathogenic and non-pathogenic 16  S rRNA amplicon 
was sequenced via Sanger sequencing (Eurofins, USA). 
Multiple sequence alignments were conducted for the 
P. multocida and M. haemolytica subspecies. Two P. 
multocida 16  S rRNA reference gene sequences (P. 
multocida strain P1933 and P030653/1) from NCBI 
were used as references in the Pm subspecies alignment. 
Similarly, two M. haemolytica 16 S rRNA reference gene 
sequences (M. haemolytica strain 90826 and 120731) 
were selected as references for the M. haemolytica 
sequence alignment. The extracted DNA from each of 
the pathogenic M. haemolytica (Mh70, serotype A1, and 
Mh19, serotype A6) and P. multocida (Pm6, serotype A) 
isolates was employed to construct the qPCR standard 
curve for quantifying the abundance of the P. multocida 
and M. haemolytica pathogenic serotypes. Additionally, 
the extracted DNA of the non-pathogenic serotypes 
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was included in the process as negative controls for 
both PCR and qPCR. For the P. multocida PCR assay, a 
50 µl volume was prepared, comprising 32.5 µl of iTaq™ 
Universal Probes Supermix (BioRad, CA, USA), 12.5  µl 
of Primer/Probe mix (Integrated DNA Technologies 
IDT, Coralville, Iowa, USA) listed in (see Additional File: 
Table S1) with a primer concentration of 0.5 µmol/µl and 
probe concentration of 0.3 µmol/µl [76], 3  µl of PCR-
grade water, and 2 µl of nucleic acid template. The PCR 
cycling conditions followed those reported in Wang et al. 
(2023) [76], with an annealing temperature of 59 °C. PCR 
for M. haemolytica A1 and A6 was conducted in a 50 µl 
reaction, consisting of 32.5  µl of LightCycler 480 SYBR 
Green I Master (Thermo Fisher Scientific, PA, USA), 
12.5 µl of both primers at a concentration of 0.8 µM, 3 µl 
of PCR-grade water, and 2  µl of nucleic acid template. 
PCR cycling conditions were carried out following Klima 
et al. (2017) [77].

Negative controls, including PCR-grade water and non-
pathogenic serotypes of P. multocida and M. haemolytica, 
were included. PCR amplification was verified through 
gel-electrophoresis. Cleanup and dilution of P. multocida 
and M. haemolytica amplicons, as well as the generation 
of the standard curve equation, were performed as 
described in Centeno-Martinez et al. (2022) [9]. The 
qPCR technical triplicate for pathobionts was carried 
out in a 20 µl volume, containing 13 µl of iTaq™ Universal 
Probes Supermix (BioRad, CA, USA) for P. multocida or 
LightCycler 480 SYBR Green I Master (Thermo Fisher 
Scientific, PA, USA) for M. haemolytica, followed by 
the addition of 5  µl of each primer/probe, as described 
above, and 2  µl of nucleic acid template. The qPCR 
cycling conditions for each of the pathogen serotypes 
were performed as previously described. To assess the 
specificity of the BRD-pathobiont serotype primers, 
samples from IN (n = 83) and NY (n = 76) were subjected 
to the analysis. Quantification of the pathogenic serotype 
abundance was carried out in triplicate, as defined in 
Centeno-Martinez et al. (2022) [9]. The prevalence of 
each of the pathogenic serotypes was determined using 
the standard curve LOD (see Additional File: Table S4).

Statistical analysis for 16 S rRNA gene sequencing and 
abundance of BRD-pathobionts
Prior to statistical testing, normality of residuals and 
homogeneity of variance were checked using the afex 
package [78]. Normality of raw and log-transformed 
data was checked using the Shapiro-Wilk normality 
test. Unfortunately, the alpha diversity metrics 
and the abundance of the BRD-pathobionts failed 
(P > 0.05) the normality of the residual assumption 
after transformation. Thus, non-parametric methods 
were applied to evaluate the effect of disease status and 

collection site (farm) on the microbial alpha diversity and 
abundance of BRD-pathobionts and 16 S rRNA gene.

To identify the overall effect of disease status (BRD-
affected compared to apparently healthy), a Mann-
Whitney test, using the function ‘mwu’ from the package 
sjstats in R [79], was applied in the alpha diversity and 
the abundance of BRD-pathobionts and 16  S rRNA 
gene. Then, samples were separated into each farm (CA, 
IN, NY, TX) to identify any differences in the alpha 
diversity, abundance of BRD-pathobionts, and 16  S 
rRNA gene within each farm using a Mann-Whitney test. 
Additionally, a chi-squared test was performed to identify 
significant difference in the BRD-pathobiont prevalence 
within each farm. Similar statistical tests were applied 
to determine if the abundance and prevalence of the P. 
multocida and M. haemolytica pathogenic serotypes 
were different between the two groups. Additionally, to 
identify the overall effect among the farms in the alpha 
diversity and abundance of BRD-pathobionts and 16  S 
rRNA gene, a Kruskal-Wallis test was applied using the 
function ‘kruskal.test’ in R. P values were adjusted using 
the Benjamini-Hochberg. Statistical significance was 
specified as P < 0.05.
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