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Abstract 

The success rate of artificial insemination in sheep remains suboptimal, which has led to an emerging interest 
in the impact of the reproductive tract microbiome on this process. This research aims to identify the ewes’ vaginal 
core bacterial community, examine the factors influencing bacterial composition, and to determine the association 
between vaginal bacteria and pregnancy success. By using a robust dataset comprising 331 multiparous ewes 
from three Spanish breeds (Latxa, Manchega, Rasa Aragonesa) across four herds, this study performed the sequencing 
of the hypervariable regions V3‑V4 of the 16S ribosomal RNA gene and the identification of Amplicon Sequence 
Variants (ASV) to analyze the bacterial community. Our analysis revealed a core bacterial primarily consisting 
of the genera Streptobacillus, Histophilus, Fusobacterium, Oceanivirga, and Parvimonas. Alpha and beta diversity, 
as well as Random Forest analysis, identified that herd and breed were the main drivers of bacterial variability. 
PERMANOVA analysis also showed significant differences in bacterial composition and abundance associated 
with pregnancy outcomes. Notably, specific ASVs associated with Fusobacterium, Leptotrichia, Histophilus, 
Escherichia, and Bacteroides were predominantly found in non‑pregnant ewes, while genera such as Pseudomonas, 
Acinetobacter, and Brevundimonas were more abundant in pregnant ewes. This study contributes to the knowledge 
about the critical roles of specific bacteria in determining reproductive success in sheep and provides novel insights 
about the importance of different factors involved in the composition of ewes’ vaginal bacterial communities.
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Introduction
Sheep farming has high economic importance in Spain, 
which is the second largest sheep producer in Europe 
and the fifth worldwide [1, 2]. During the last decade, 
a generalized decline in ovine production has been 
observed. In particular, Spanish sheep production has 
decreased from ~20 million animals in 2009 to ~14 
million in 2022, representing a 30% reduction [3]. 
Additionally, European production is not sufficient for 
its own consumption [4]. Therefore, understanding the 
factors that negatively affect sheep production efficiency 
is critical for the sheep production industry.

Artificial insemination (AI) is a key technique in 
livestock breeding programs, particularly in dairy 
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ruminants [5, 6]. By facilitating the connection of herds, 
AI enables the comparison of genetic values across 
all animals and the efficient dissemination of genetic 
improvement achieved to the whole population [6, 
7]. However, the efficiency of AI varies significantly, 
especially in sheep, with typically lower rates of success 
that range from 30 to 60% [8, 9]. This fact contributes to a 
decrease in the economic profitability of farms and slows 
down the expected genetic gain [10]. Several factors may 
affect the low fertility rate of AI in sheep. These include 
the morphology of the ewe’s reproductive tract [11], 
the requirement of using fresh semen [12, 13], and the 
difficulty of accurately determining the exact phase of the 
ewe’s ovulatory cycle at the time of insemination [14].

In the last decade, several studies have evidenced that 
alterations in the women’s genital microbiota can lead to 
reproductive dysfunction and even affects sperm motility 
[15–22].

The key role of the microbiota on the human 
reproductive tract has laid the basis for microbial 
investigations in livestock. In bovine, recent 
investigations have characterized the reproductive 
microbiota [23, 24] and other research showed that 
microbial communities can influence reproductive 
efficiency [25, 26]. Despite the scarcity of studies focusing 
on ovine reproductive health, there is a growing interest 
in elucidating the composition and abundance of the 
vaginal microbiota and its correlation with sheep fertility. 
In this line, recent studies by Serrano et al. [27], Koester 
et  al. [28], Barba et  al. [29], and Reinoso-Peláez et  al. 
[30] identified candidate microorganisms significantly 
associated with sheep reproductive success. Remarkably, 
genera such as Neisseria, Oenococcus, Mageebacillus, 
Histophilus, Actinobacillus, and Sneathia were more 
abundant in non-pregnant ewes. On the contrary, 
Mannheimia, Oscillospiraceae, and Alistipes were more 
abundant in ewes that successfully achieved pregnancy, 
suggesting that the presence of these taxa may be 
indicative of a eubiotic state. Furthermore, Serrano 
et  al. [27] and Reinoso-Peláez et  al. [30] also showed 
that Intravaginal progesterone-releasing device (PRID) 
and synchronization treatments impact microbiota 
composition, and Greenwood et  al. [31] identified 
significant differences between breeds in the vaginal 
microbiome. These findings suggest that microbiota 
composition can be affected by both environmental and 
host genetic factors.

Under this context, the present study aims to further 
elucidate the genetic and environmental factors 
influencing the bacterial dynamics of the vaginal tract 
potentially impacting reproductive outcomes by AI in 
sheep by analyzing a dataset of 331 ewes. Our specific 
objectives were (i) to describe the bacterial core of the 

sheep attributable to the vaginal tract, (ii) to identify 
the main factors associated with the composition 
and abundance of these bacterial communities, and 
(iii) to determine the composition and abundance of 
vaginal bacterial communities potentially associated 
with pregnancy outcome. For this purpose, vaginal 
samples from different Spanish sheep breeds reared 
under different production systems and environments 
were analyzed by amplifying and sequencing the V3-V4 
hypervariable regions of the 16S ribosomal rRNA gene. 
The choice of a substantial sample size not only added 
robustness to the findings but also reinforced the validity 
of the study, allowing for a comprehensive analysis 
across diverse genetic backgrounds and environmental 
conditions.

Materials and methods
Animal samples
The research involved 331 multiparous ewes, aged 
between two and five years, and belonging to three breeds 
reared in four different locations in Spain (Figure  1). It 
included 71 ewes from Latxa breed (Vitoria, País Vasco; 
herd L), 119 from Manchega (of which 60 were from 
herd RN and 59 from herd VL, both from Valdepeñas, 
Castilla-La Mancha), and 141 from Rasa Aragonesa 
(Zaragoza, Aragón; we will refer to Rasa, henceforth; 
herd R).

Ewes were estrous synchronized using a PRID 
containing 20 mg of Flurogestone acetate (Chronogest 
MSD Animal Health, Kenilworth, NJ, USA). For Latxa 
ewes, PRIDs included 0.6 g of powdered Framycetin 
(neomycin sulfate, Framicas. Laboratorios Ovejero, 
Spain). No antibiotic treatment was added to the PRIDs 
used in the other groups. After 14 days, the devices 
were removed and immediately ewes were injected 
with a dose of 300–500 mg of Pregnant mare’s serum 
gonadotropin depending on body weight, to stimulate 
ovulation. Cervical artificial insemination was conducted 
53–55 h after PRIDs removal. Just before insemination, a 
vaginal exudate was taken from each ewe with a vaginal 
collection swab (Real Vaginal Microbiome DNA Kit, 
Durviz S.L., Valencia, Spain). Swabs were immediately 
refrigerated on dry ice during sampling until arrival 
to the laboratory, where they were preserved until 
the extraction at −80 ˚C. Sampling was performed 
consistently across all groups, using identical swabs and 
protocols. All samples were collected from the same set 
of commercial farms by the same trained professional. 
To avoid cross contamination, we used a speculum to 
facilitate the sampling, which was disinfected across ewes 
with povidone-iodine solution in water.

Ewes from each breed were inseminated with fresh 
semen from 13 Rasa, 12 Latxa and 10 Manchega rams, 
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respectively. Rams used for AI aged between 4 and 7 
years and started being semen donors at 10 months of 
age. The semen underwent minimum quality controls, 
including mass motility > 3.5 and individual motility > 
80/4. Sperm doses were prepared with fresh semen at a 
concentration of 300 to 400 million of spermatozoids/mL 
using as diluent INRA96® (IMV Technologies, L’Aigle, 
France), plus penicillin, gentamicin and amphotericin 
B and packed in 0.25 mL straws in Rasa and Manchega 
breeds. In Latxa breed, rams’ sperm doses were prepared 
with powdered skimmed cow’s milk, plus streptomycin, 
penicillin, and sodium sulfanilamide.

Pregnancy diagnosis was assessed by transabdominal 
ultrasound performed between 37 and 55 days post 
insemination. Fertility was determined based on 
ultrasound results adjusted for birth outcomes: positive 
ultrasounds were classified as “positive” for pregnancy, 
while negative ultrasounds were classified as “negative” 
unless birth outcomes were positive. This aimed to assess 
fecundation and the relationship between pregnancy 
capacity and vaginal bacterial communities.

DNA extraction and sequencing
Vaginal DNA was extracted with the Real Vaginal 
Microbiome DNA Kit (Durviz S.L., Valencia, Spain) 
following the specific protocol for microbial DNA 
isolation: Swabs were placed in 2  mL microtubes 
containing 900 µL of CTAB Extraction Buffer and 25 µL 
of Proteinase K, then incubated at 70 °C for 10 minutes. 
After bead beating for 10 minutes at maximum speed 
using a horizontal adapter, samples were centrifuged 

at 14,000 rpm for 5  minutes. The lysate (900 µL) was 
transferred to binding buffer (250 µL) and loaded onto 
silica-membrane spin columns. Following washing steps 
with Desinhibition and Wash Buffers (500 µL and 700 µL, 
respectively), DNA was eluted in 100 µL of pre-heated 
Elution Buffer (70 °C). All centrifugation steps were 
performed at 14,000 rpm, and the process was completed 
within approximately 35 minutes. Genomic DNA 
concentration was measured using a Qubit 4 fluorometer 
(Thermo Fisher Scientific, DE, USA) and genomic quality 
ratios (260/280 and 260/230) with Nanodrop 2000 
spectrophotometer (Thermo Fisher Scientific, DE, USA).

DNA samples were processed to generate libraries of 
V3-V4 specific amplicons from bacterial 16S rRNA gene, 
which were sequenced on Illumina MiSeq using a 2 x 
300 bp paired-end run by an external service (Instituto 
de Parasitología y Biomedicina López-Neyra, Granada, 
Spain).

Bioinformatic analysis
Raw sequences were processed using the DADA2 
package for R analysis environment [32, 33]. To generate 
the amplicon sequences of the V3-V4 regions of the 
16S rRNA gene the primer pair 341 F (5’-CCT ACG 
GGNGGC WGC AG-3’) and 785R (5’-GAC TAC HVGGG 
TAT CTA ATC C-3’) was used [34]. Primer sequences were 
trimmed using the Cutadapt software [35]. The selected 
truncation length for the forward and reverse reads was 
240 bp and 200 bp, respectively. The maximum number 
of assigned errors was set to 2. Bases at the end of a 
sequence with a quality score ≤ 2 were trimmed. Finally, 

Fig. 1 Locations of the farms to which the four herds belonged to
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Amplicon Sequence Variants (ASVs) were identified 
with the DADA2 algorithm and taxonomically assigned 
with a Naive Bayesian classifier pre-trained method on 
the hypervariable regions V3-V4 as implemented in the 
DADA2 package. The reference database used was the 
SILVA v132 training set (https:// www. arb- silva. de/ downl 
oad/ arb- files/; Version: silva_nr_v132_train_set.fa.gz).

Bacterial composition and diversity analysis
To elucidate the complexity of the vaginal bacterial 
communities in ewes, the first part of this study focuses 
on determining the core bacterial community of the 
sheep vaginal tract, assessing alpha and beta diversities, 
and the second part aims to conduct a differential 
abundance analysis to discern taxa variations associated 
with pregnancy. Additionally, the influence of factors 
such as breed and herd on bacterial composition was 
explored, providing a comprehensive overview of the 
bacterial landscape and its determinants. Three variables 
were considered for the analyses: (i) breed, with three 
levels: Latxa, Manchega, and Rasa Aragonesa; (ii) herd, 
that in our data corresponds to the breed, with the 
exception of Manchega whose samples come from two 
distinct herds identified by the series codes VL and 
RN, resulting in four herd levels: Latxa, Manchega VL, 
Manchega RN, and Rasa; (iii) pregnancy, with two levels: 
positive or negative. Statistical analyses were performed 
using R version 4.3.1 [32].

To determine the core bacterial, ASVs were grouped at 
the genus level, and taxa prevalent in at least 90% of the 
samples and with a minimum relative abundance (RA) of 
2% were selected. The core bacterial was determined for 
all samples as well as within each level of herd and breed 
variables.

Alpha-diversity (bacterial diversity within a single 
sample) was estimated through Shannon index, the 
number of species weighted by their abundance and 
evenness of distribution [36]. The Shannon index was 
preferred as it is better suited for ASV data, providing 
a comprehensive diversity measure without heavily 
depending on rare species, unlike Chao1 and ACE index 
[37]. Alpha-diversity was computed by using Phyloseq 
R package [38] and rarefaction was performed using the 
Q10 percentile read count (24,142 reads) to standardize 
read counts across samples while capturing lower 
diversity estimates. Statistical significance was assessed 
using the Wilcoxon rank-sum test.

For the computation of beta-diversity (a measure 
of dissimilarity between samples based on bacterial 
communities), the dataset was normalized using the 
Centered log-ratio (CLR) transformation with the 
microbiome R package [39], which allows to account 
for the compositional nature of the data. A Principal 

Component Analysis (PCA) was conducted with the 
prcomp function from stats R package [32]. To evaluate 
differences associated with herd, breed, and pregnancy, 
we implemented a Permutational Multivariate Analysis 
of Variance (PERMANOVA) followed by pairwise 
comparisons between levels of each group. The vegan 
[40] and RVAideMemoire [41] R packages were used for 
PERMANOVA and pairwise comparisons, respectively. 
Differences associated with pregnancy were evaluated for 
all samples and within each herd.

A cluster analysis was developed to group the samples 
based on their ASV abundance similarity. For this 
analysis, the ASV table was filtered by a minimum RA of 
1%. To reduce the dimensionality of the data, we applied 
a Non-Metric Multidimentional Scaling (NMDS) analysis 
using Euclidean distances (with CLR matrix). Following 
this, distances were computed using the radial theta 
algorithm to determine the angle of each data point 
relative to the centroid of all points in a two-dimensional 
plane [39, 42], calculated as:

where atan2 refers to two-parameter arctangent 
function, x and y are the coordinates of a point, and x and 
y are the mean coordinates of the NMDS dataset.

Subsequently, the K-means algorithm was applied 
for clustering the samples under these distances. 
The optimum number of clusters was selected by the 
Silhouette Method, which evaluates how similar an 
object is to its cluster when compared to other clusters. 
The silhouette scores were computed using the cluster R 
package [43].

To determine the ability of the identified clusters to 
predict the analyzed variables (i.e., herd, breed, and 
pregnancy), Random Forest analysis was conducted. 
The Random Forest algorithm is a proficient ensemble 
learning method for classification and estimating variable 
importance, providing a ranking of each variable based 
on its significance in prediction. In this analysis, the 
forest was constructed with a total of 1000 trees with 
the randomForest R package [44]. To evaluate the 
performance and precision of the model, a k-fold cross-
validation with 5 folds was conducted.

Finally, differential abundance analysis was 
performed to identify variations in taxa associated 
with pregnancy across different taxonomic levels, 
including ASV, species, genus, and phylum using the 
DESeq2 R package [45] and applying a prevalence 
filter of 1%. This package employs negative binomial 
generalized linear models and calculates size factors 
for data normalization. Additionally, the poscount 
method was used to deal with the problem of zero-
inflated count data. Two approaches were carried out 

θ = atan2
(

y− y, x − x
)

,

https://www.arb-silva.de/download/arb-files/
https://www.arb-silva.de/download/arb-files/
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to implement the differential abundance analysis for 
pregnancy, to which we will refer as: (i) global model, 
when all samples were considered for the analysis, and 
(ii) herd-specific model, when a within-breed analysis 
was performed. To avoid overparameterization and 
given that the variables breed and herd only differ in 
one additional level (in the case of herds referred to 
Manchega breed), the primary variables considered 
for the model were pregnancy and herd. This decision 
was validated through Random Forest and AIC tests, 
confirming that herd was a significant predictor while 
other factors such as ram effect and birthday had no 
substantial impact. The global model was represented 
as:

where y is the vector of abundance of a given 
taxon; ß is a vector that includes the fixed effects of 
pregnancy and herd in the case of the global model, 
and only pregnancy in the case of the herd-specific 
model; e is the residual error; and X is the incidence 
matrix relating the observations with the vector of 
fixed effects.

False Discovery Rate (FDR) multitest correction was 
applied to adjust p-values at 5% level.

y = Xβ + e

Results
The fertility rate of all artificially inseminated ewes was 
43%, while differences were observed among the different 
herds: 73% for Latxa, 42% for Rasa, 30% for Manchega 
VL, and 24% for Manchega RN groups.

Bacterial composition and diversity analyses
The abundance table included 331 samples, revealing 
12,235 ASVs with a total of 12,742,281 reads. The mean 
read count per sample was 38,496. Taxonomic annotation 
identified 33 phyla, 67 classes, 161 orders, 351 families, 
and 906 genera.

The core bacterial was integrated by the genera 
Streptobacillus (24%), Histophilus (16%), Fusobacterium 
(18%), Oceanivirga (10%), Anaerococcus (8%), 
Porphyromonas (7%), Parvimonas (6%), Aerococcus (5%), 
Bacteroides (3%), Streptococcus (2%) and Trueperella (2%) 
(Figure 2). The abundance of these genera varied across 
herd groups; Latxa and Rasa showed a higher abundance 
of Fusobacterium, while Manchega VL and RN herds 
displayed a greater abundance of Histophilus (Figure 2a). 
This core translated in the following groups and 
proportions at the phylum level: Proteobacteria (16%), 
Fusobacteria (52%), Firmicutes (21%), Bacteroidota 
(10%), and Actinobacteria (2%). The abundance of these 
phyla varied among herd groups, being Rasa the breed 
with the lowest abundance of Proteobacteria and the 
highest abundance of Firmicutes (Figure 2b).

Alpha-diversity (Shannon index) varied among 
herds. Latxa exhibited the lowest diversity, followed by 
Manchega RN. Manchega VL had the highest diversity, 

Fig. 2 Core bacterial community composition with a prevalence ≥ 90% across all samples, at the genus (a) and phylum (b) levels, for the four herds 
analyzed. L: Latxa, MRN: Manchega RN, MVL: Manchega VL, R: Rasa
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significantly different from the other herds. Rasa 
displayed more dispersed diversity, with no significant 
differences compared to Latxa and Manchega RN, but 
significantly different from Manchega VL (Figure  3a). 
Although higher Alpha-diversity was observed in 
pregnant ewes within the Manchega RN and VL herds, 
no significant differences were found within these 
groups, among other herds, or across the entire sample 
set (Figure 3b and Supplementary file Figure S1).

Principal Component Analysis revealed differences 
among breeds and herds (Figure  4), with the first three 
axes explaining a 12.46%, 10.09%, and 7.09% of the 
total variation, respectively. Latxa and Manchega RN 
presented a lower dispersion than the other groups. No 
differences were observed regarding pregnancy status, as 
shown in Supplementary file Figure S2.

Results from PERMANOVA showed significant 
differences for herd and breed for the global model, 
as well as for all pairwise comparisons across all herd 
groups. Significant differences were also observed for 
pregnancy under the global model (Table 1).

The number of clusters identified by the Silhouette 
method was k = 3, showing a herd-pattern, with the 
exception that Latxa and Manchega RN herds clustered 

together. However, when assuming k = 4, the model 
followed a clear herd pattern (Figure 5).

The Random Forest analysis revealed that herd was 
the most important variable for predicting clusters, 
very closely followed by breed under both RA and CLR 
normalization approaches. Pregnancy had a negligible 
effect so far. Cross-validation revealed that the accuracy 
of prediction for herd was the variable with the highest 
accuracy (0.89), followed by breed (0.73) (Table 2).

Differential abundance analysis
Figure  6 summarizes the results from the different 
analyses performed at the ASV, species, genus and 
phylum levels. Under the global model, six ASVs 
presented significantly higher abundance in pregnant 
ewes, belonging to the genera Staphylococcus, 
Porphyromonas, Aerococcus, Corynebacterium, 
Arcanobacterium, and Histophilus, while fifteen ASVs 
showed significantly higher abundance in non-pregnant 
ewes. From the former, thirteen ASVs were attributed 
to Escherichia-Shigella, Leptotrichia, Bacteroides, 
Fusobacterium, Porphyromonas, Oceanivirga, 
Campylobacter, and Histophilus; and two ASVs attributed 
to Pasteurellaceae and Weeksellaceae families. When the 

Fig. 3 Alpha‑diversity (Shannon index) for herd (a) and pregnancy (b) at the ASV level for the four herds analyzed. Data were rarefied. Statistical 
significance is indicated by asterisks: * (p < 0.05), *** (p < 0.001). ns: not significant. Results in Figure b are not significant
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analysis was performed at the genus level, Histophilus, 
Escherichia-Shigella, and Leptotrichia were found to be 
more abundant in non-pregnant ewes. The distributions 
of these ASVs are specifically depicted in Supplementary 
Boxplots in Supplementary file, Figures  S6 to S11, 
providing visual representation of the findings detailed 
above.

Under the within-herd model there was no consistency 
across taxa and groups. Hence, Latxa presented 
two ASVs belonging to Escherichia-Shigella and 
Fusobacterium with significantly higher abundance in 
pregnant ewes, while no taxa were associated with non-
pregnant. Contrastingly, Manchega RN presented one 
ASV belonging to the Fusobacterium genus, along with 
species Histophilus somni, and the genera Fusobacterium, 
Histophilus, Parvimonas, and Bacteroides, as well as the 
Fusobacteriota phylum, were significantly more abundant 
in non-pregnant ewes. On the other hand, genera 
Acinetobacter, Pseudomonas, and Brevundimonas were 
found more abundant in pregnant ewes. The Manchega 
VL herd exhibited two ASVs from the genus Histophilus 
and family Pasteurellaceae significantly more abundant in 
non-pregnant ewes. In line with the global model results, 
the Escherichia-Shigella genus was significantly more 
abundant in non-pregnant ewes for Rasa.

Additional information of the pregnancy analysis is 
summarized in Supplementary file, Figures S4–S15.

Discussion
Our findings revealed that the bacterial core aligns with 
previous research. showing a high prevalence of the phyla 
Proteobacteria, Fusobacteriota, Firmicutes, Bacteroidota, 
and Actinobacteriota, which are key components of 
the ewe’s vaginal bacterial community. These phyla 
have also been reported in sheep by Swartz et  al. [46], 
Serrano et al., [27], Greenwood et al. [31], and Reinoso-
Peláez et  al. [30], as well as in cattle by the work of 
Swartz et al. [46], Ong et al. [47], and Amat et al. [48]. At 
genus level, Streptobacillus, Histophilus, Fusobacterium, 
Porphyromonas, and Bacteroides, were also identified 
by Serrano et al. [27] and Reinoso-Peláez et al. [30] even 
using a different sequencing technique (metagenomics 
with nanopore). Some of these taxa also agree with the 
work of Swartz et  al. [46], where Streptobacillus and 
Porphyromonas were the most abundant genera in 
Rambouillet ewes from USA. The authors also found 
Streptobacillus in high abundance in cows, suggesting 
a certain similarity in the bacterial profiles in these two 
species of ruminants. In contrast, several taxa in our 
core composition, including Oceanivirga, Parvimonas, 
Anaerococcus, Aerococcus, Streptococcus, and 
Trueperella, were absent in the aforementioned studies, 
thus suggesting that the vaginal bacterial composition is 

Fig. 4 Principal Component Analysis for breed and herd 
given the bacterial composition at the ASV level, represented 
in a 2D (a) and 3D (b) plots. Ellipses in panel (a) are calculated using 
covariance to visualize data variability within each breed group

Table 1 PERMANOVA results for breed, herd, and pregnancy 
variables

Df: Degrees of Freedom; Sum Of Sqs: Sum of Squares;  R2: Coefficient of 
Determination; F: F‑statistic; Pr(>F): P value for the F‑statistic; MRN: Manchega 
RN, MVL: Manchega VL.

Df Sum Of Sqs R2 F Pr (>F)

Herd

 Global 3 207,627 0.2192 30.601 0.001

L‑R 1 67,241 0.1214 29.020 0.001

L‑MRN 1 52,994 0.2293 40.184 0.001

L‑MVL 1 63,942 0.2162 33.661 0.001

R‑MRN 1 79,766 0.1357 32.201 0.001

R‑MVL 1 78,391 0.1224 26.803 0.001

MRN‑MVL 1 63,539 0.2007 29.386 0.001

Breed

 Global 2 144,089 0.1521 29.424 0.001

Latxa‑Rasa 1 67,241 0.1214 29.020 0.001

Latxa‑Manchega 1 56,198 0.1245 26.752 0.001

Manchega‑Rasa 1 87,540 0.1077 31.164 0.001

Pregnancy

 Global 1 5816 0.0061 2.032 0.001

L 1 1019 0.013 0.909 0.633

R 1 2736 0.0067 0.938 0.554

MRN 1 1924 0.0193 1.260 0.131

MVL 1 2705 0.0176 0.916 0.521
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Fig. 5 Analysis of sample similarities and clustering in bacterial community studies. (a) Heatmap showing the RA of bacterial community 
composition, arranged according to samples similarity parameters. (b) Silhouette width plot for the different numbers of clusters. (c) and (d) Barplot 
representing the clusters assuming different number of k. Each bar represents the number of samples within each cluster, color‑coded by sample 
type: L (Latxa), MRN (Manchega RN), MVL (Manchega VL), and R (Rasa). The asterisk (*) highlights the optimal K‑value determined by the highest 
silhouette scores achieved in the analysis

Table 2 Assessment of variable importance and predictive accuracy in bacterial community clustering using Random Forest analysis

Impact of herd, breed, and pregnancy, on bacterial cluster categorization, evaluated by Random Forest importance scores under CLR data transformations. Predictive 
accuracy was assessed through cross‑validation
1 Random Forest results where the predicted values were the clusters (n = 4) with variables evaluated including herd, breed, and pregnancy. Mean Decrease Accuracy: 
The average reduction in model accuracy when a variable is omitted. Mean Decrease Gini: The reduction in the Gini coefficient when a variable is omitted, indicating 
variable importance
2 Cross Validation: Assesses the predictive accuracy of the Random Forest model via k‑fold Method (k = 5). Accuracy: The proportion of correct predictions made by 
the model, estimated by the mean percentage of those which were correctly assigned. Std: Standard deviation of the accuracy, providing a measure of its variation 
across the cross‑validation folds. Significance between accuracy results is denoted by superscript letters: different letters (a, b, c) indicate statistically significant 
differences between groups as determined by post‑hoc Dunn’s testing with FDR adjustment

Variable 1Random Forest

Mean decrease accuracy Mean decrease gini

Herd 0.367 100.039

Breed 0.295 68.394

Pregnancy 0.003 3.371
2Cross-Validation

Accuracy SD

Herd 0.8919a 0.0177

Breed 0.7285a 0.0706

Pregnancy 0.3879b 0.0700
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influenced by both genetic (breed) and environmental 
factors related to the geographical location, management 
practices, treatment, and AI, among others. The differing 
management practices, such as the more extensive 
systems used for breeds like Latxa and Rasa compared 
to Manchega, may contribute to these variations. This 
suggests that our findings, while aligning with existing 
data, might not be universally applicable across different 
breeds or management systems due to these inherent 
differences.

In our study, the Latxa herd exhibited significantly 
lower Alpha-diversity. This reduced diversity may be 
associated with the antibiotic treatment applied to the 

intravaginal sponge for estrus synchronization in this 
herd. This finding is in line with the study by Reinoso-
Peláez et  al. [30], who also reported a lower Alpha-
diversity in the group of ewes that contained antibiotic 
treatment in the synchronization sponge. We did not 
observe a clear association between Alpha-diversity 
and pregnancy, which differs from previous studies 
by Chen et  al. [49], Serrano et  al. [27], Koester et  al. 
[28], and Reinoso-Peláez et  al. [30], who suggested 
that higher Alpha-diversity could be associated with a 
beneficial effect on pregnancy. Studies in livestock have 
also highlighted the importance of microbiota diversity 
in other microbial systems, such as gut and rumen [50, 

Fig. 6 Heatmap showing significant results (FDR at 5%) for differential abundance analysis for pregnancy success at phylum, genus, species 
and ASV levels. The x‑axis shows the results for the global model (ALL) and within each herd (L: Latxa, MRN & MVL: Manchega, R: Rasa). The logFC 
is represented by color gradations, red for negative and blue for positive on pregnancy success. The color intensity correlates with the logFC value, 
values close to zero are represented in white. The logFC value is also presented in each square of the heatmap. The y‑axis categorizes the taxonomic 
assignments, delineating a hierarchical classification that includes the ASV code, followed by its corresponding phylum, family, genus, and species, 
and its RA
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51], for maintaining animal health and productivity. 
Conversely, decreases in Alpha-diversity have been 
linked to various health challenges and production issues 
[52] probably due to the displacement of certain taxa 
that form part of the core microbiota, due to an unusual 
increase of harmful bacteria.

Beta diversity showed a generalized pattern of 
similarity for individuals of the same herd and breed, 
according to the results from the PCA. Cluster analysis 
further demonstrated structured variation in the vaginal 
bacterial communities across herds. For instance, 
differences in bacterial clustering were observed 
depending on the normalization method (RA or CLR) 
as detailed in Figure 5 and Supplementary file Figure S3. 
While using CLR reflected a herd-specific clustering 
pattern, when employing RA, a distinct breed-specific 
pattern emerged. These variations highlight the impact 
of normalization matrices on method performance, 
emphasizing the importance of careful method 
selection in microbiome studies for reliable biological 
interpretation. Notwithstanding it is well known that 
microbiome data are compositional and this needs to be 
considered. In our study, it is challenging to determine 
whether herd or breed has a greater influence on the 
bacterial composition, due to the overlapping between 
herd and breed according to our experimental design.

Concerning pregnancy, although no significant 
differences were observed in the global bacterial 
communities, our PERMANOVA analysis in the 
global model suggests the presence of subtle patterns 
and specialized taxa associated with pregnancy 
success. This is further supported by our differential 
abundance results, which identified specific taxa linked 
to reproductive outcomes. Hence, Fusobacterium 
was significantly associated at both the genus and 
molecular levels (ASV91, ASV159, and ASV575), which 
showed higher abundance in non-pregnant ewes within 
the global model and Manchega RN herd (Figure  6, 
Supplementary file Figures S8, S10, S11, S13). Although 
these results might suggest a potential influence on 
reproductive health, Fusobacterium was generally 
less abundant in the RN herd compared to others, 
challenging simple conclusions about its impact. This 
genus is known to cause various reproductive disorders 
[28, 53, 54]. However, given its variable abundance across 
herds and the lack of consistent associations, the role of 
Fusobacterium in reproductive outcomes in our study 
appears to be more complex and possibly influenced 
by herd-specific environmental or management 
factors, rather than merely its presence or abundance. 
Leptotrichia, also identified at both the genus and 
molecular levels (ASV29), exhibited a significantly higher 
abundance in non-pregnant ewes, a pattern consistently 

observed across all herds (Figure  6, Supplementary file 
Figures  S6, S14. Known as a gram-negative, anaerobic 
bacteria typically found in the mouth, gastrointestinal 
tract, and female genital tract [55, 56]. Some species, 
such as L. amnionii or L. trevisanii have been linked 
in humans to spontaneous abortion [57] and fetal 
demise [58], and to severe acute chorioamnionitis [59], 
respectively. Although specific species were not identified 
in this study, these findings allow us to hypothesize 
about the possible negative effect of this genus on sheep 
reproductive success. Histophilus identified at the genus, 
species (Histophilus somni), and ASV (ASV297) levels, 
was more abundant in non-pregnant ewes (Figure  6, 
Supplementary file Figures  S11, S12, S13), suggesting 
its detrimental influence on fertility. This association is 
supported by findings by Serrano et al. [27] and Koester 
et  al. [28], Histophilus somni is implicated in a variety 
of diseases in cattle and small ruminants, including 
polyarthritis/tenosynovitis, abortion, fetal septicemia, 
epididymitis-orchitis, and ocular infections [57, 60, 
61]. The genera Acinetobacter, Brevundimonas, and 
Pseudomonas displayed a notable higher abundance in 
pregnant ewes (Figure 6, Supplementary file Figures S13, 
S14, S15), suggesting their potential relevance in 
reproductive processes. In humans, Koort et  al. [62] 
found that men with an Acinetobacter-associated 
bacterial community had higher success rates in assisted 
reproductive technologies, highlighting a possible 
association. However, further research is needed to 
confirm its role in ewes. Garcia-Segura et al. [63] reported 
that Brevundimonas inversely correlates with sperm 
DNA fragmentation and is positively associated with 
sperm motility and lower oxidative-reduction potential, 
suggesting its role in improving male fertility. Further 
exploration and analysis of the species within this genus 
in our study’s community could be informative. Indeed, 
the effect of Acetinobacter on pregnancy could come in 
our study from the ram, despite no information about 
the rams’ bacterial community is available. Conversely, 
Lennard et  al. [64] observed a significant association 
between Parvimonas micra and genital inflammation and 
persistent bacterial vaginosis in young African females. 
These findings underscore the importance of further 
research into the molecular composition of these genera 
within such populations, providing crucial insights into 
their effects on reproductive health and emphasizing the 
necessity for more detailed molecular studies.

At the ASV level, similar ASVs showed divergent 
impacts on pregnancy, suggesting multifactorial 
influences. For instance, ASVs with high parity 
identity (Percentage of identity > 99%, Supplementary 
file Table  S1) to Actinobacillus semini (ASV395 and 
ASV132), Fusobacterium (ASV44, ASV91, and ASV159), 
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Shigella sonnei (ASV40 and ASV142) —highlighted 
as an emerging pathogen by Shad and Shad [65] — 
as well as Histophilus somini (ASV240 and ASV297) 
(Supplementary file Table  S1), which previous research 
by Serrano et  al. [27] and Koester et  al. [28] has linked 
to pregnancy disorders, showed contrasting associations 
in our analysis. This variability highlights the complex 
interaction between bacterial genetic profiles and 
pregnancy, evidencing both positive and negative 
correlations. Notably, the significance of a microbe’s 
presence is often less critical than its relative abundance, 
suggesting that minor genetic variations can lead to 
divergent physiological responses.

An interesting result to highlight is that ASV244 
(Figure  6), which corresponds to the genus 
Mageeibacillus, is significantly more abundant in non-
pregnant ewes. Although its abundance and prevalence 
were relatively low (Supplementary file, Figures  S4, S5, 
S11), this microorganism has also been reported in 
other studies. Serrano et al. [27] reported Mageeibacillus 
indolicus to be less abundant in pregnant ewes and more 
prevalent in farms with higher artificial insemination 
failure rates. Mageeibacillus indolicus, a recently 
isolated bacterium from the human vaginal tract, was 
identified as a key species in distinguishing between 
full-term spontaneous births and the risk of premature 
birth [66]. Furthermore, Mageeibacillus has been noted 
as a significant species variable in classifiers used to 
differentiate between spontaneous full-term births and 
those at risk of premature birth [67].

Latxa showed two ASVs (ASV44 and ASV142) that 
were significantly more abundant in pregnant ewes, 
with no taxa significantly more abundant in non-
pregnant ewes. Additionally, the Latxa herd presented 
the highest pregnancy rate, which could be related 
to the antibiotic’s effect on potential bacterial groups 
that may be detrimental to pregnancy. These two ASVs 
presented very high logFC values. However, an important 
consideration is that in our results, taxa with the highest 
logFC values, above |±20| (Figure  6), exhibited low 
prevalence (<20%) and RA <1% (Supplementary file, 
Figures S4 and S5). Therefore, it is important to analyze 
them carefully.

Finally, this study’s large sample size, provides robust 
insights into bacterial diversity, enhancing understanding 
and informing future research [68].

Conclusions
The core bacterial is specific to ewes and likely herd 
specific. Specific bacterial associations with pregnancy, 
such as Fusobacterium, Leptotrichia, Histophilus, 
Escherichia-Shigella, and Bacteroides-related ASVs, 

were found to be more abundant in non-pregnant ewes, 
while potentially beneficial genera like Pseudomonas, 
Acinetobacter, and Brevundimonas were identified. 
Importantly, the impact of these taxa on pregnancy 
appears to be herd-dependent in most cases. Our study 
suggests that bacterial diversity is mainly influenced 
by environmental factors, which may include the 
climatic conditions, the feed provided to the animals, 
or the management of the ewes. However, an important 
genetic component is not negligible according to our 
results. Vaginal bacteria from ewes predicted both 
herd and breed variables with an accuracy higher than 
70%, highlighting the existence of a clear b structure 
across breeds and herds. The high sample size of this 
study, exceeding 300 samples, provides robust results 
that significantly contribute to reinforcement or new 
insights in the field of bacterial studies. Metagenomic 
studies in future will be of high value for elucidating 
specific genes and metabolic networks potentially 
involved in reproductive failure.
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