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Abstract
Background  The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive 
performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite 
resources between livestock production and human populations, the agricultural sector faces dual imperatives to 
enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient 
assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs 
an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to 
elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan 
Partridge ducks.

Results  Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria 
were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance 
in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the 
expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). 
And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism 
pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different 
metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas 
the liver is very closely related to lipid metabolism, we are close to understanding whether an individual’s energy 
utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each 
for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, 
and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 
2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential 
gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-
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Background
China is the world’s largest producer and consumer of 
duck. In addition to consuming duck meat and eggs, 
Chinese consumers also favor secondary products 
such as duck necks and wings [1]. In recent years, the 
duck farming industry in China has undergone sub-
stantial and swift expansion. Nonetheless, such rapid 
advancements in livestock sectors have exerted con-
siderable environmental strain. Additionally, the con-
tention for resources between humans and livestock is 
escalating; therefore, our objective is to mitigate these 
issues through the propagation of efficient animal 
breeds. RFI, as proposed by Koch, serves as an index 
for estimating feed efficiency [2, 3]. Animals with LRFI 
had higher feed use efficiency and animals with high 
HRFI had lower feed use efficiency [4].

Animal feed conversion is closely related to lipid 
metabolism and energy metabolism [5]. The liver is 
an indispensable and vital organ in humans and ani-
mals, serving as a central hub for various metabolic 
processes. Especially in lipid metabolism and energy 
metabolism [6]. The liver’s lipid metabolism products 
interact with the gut microbiota and other organs [7]. 
Arachidonic acid (AA) and its derivative lipid media-
tors, such as prostaglandins (PGs), leukotrienes, and 
various other substances, play a crucial role in regulat-
ing hepatic lipid metabolism [8, 9]. An increasing body 
of research has demonstrated that the gut microbiota 
exerts a significant influence on the feed efficiency of 
animals, particularly in the caecum [10–14]. Recent 
research has uncovered a bidirectional communica-
tion axis between the gut and liver, which allows the 
gut microbiota to significantly affect an animal’s feed-
ing behavior and energy metabolism [15]. The various 
compounds produced within the intestinal tract can 
also influence the interactions between the gut micro-
biota and the host, such as short-chain fatty acids 
[16], bile acids [17], choline metabolites [18], amino 
acid-derived metabolites [19] and microbial compo-
nents [20]. These serve as signaling molecules that 
are detected by various host receptors, subsequently 
activating signaling and metabolic pathways in key tis-
sues involved in energy metabolism and food intake 
regulation.

In recent years, the 16s rDNA sequencing technique 
has been one of the most commonly used methods 

for recognizing gut microbes. It mainly studies the 
species composition, and evolutionary relationship 
between species and community diversity [21–23]. 
Metagenomics sequencing focuses on microbial popu-
lation structure, gene function and activity, coopera-
tion between microorganisms, and the relationship 
between microorganisms and the environment [24]. 
Lots of experiments by LC-MS have suggested that it 
can accurately identify and quantify small molecules 
involved in metabolic reactions [25, 26]. Besides it has 
excellent performance in the discovery of molecular 
markers [27]. Some studies have combined 16 S rDNA 
sequencing, metagenomes and metabolomics to better 
understand the composition, diversity, function and 
interaction mechanism of intestinal microorganisms 
[28]. Over the past decade, transcriptome has become 
an increasingly mature technology. Nowadays, it can 
help us identify genes at the genetic level that under-
lie phenotypic differences between groups of samples 
[29].

Current research on the regulation of duck feed-
ing behavior by the liver and microorganisms is lim-
ited. To deepen our understanding of the interaction 
between host genes and microbiota in ducks with 
varying residual feed intakes, we conducted an inves-
tigation integrating liver transcriptomics, caecum 
metagenomics, and metabolomics. Upon analyzing the 
composition and function of the intestinal microbial 
community, we have identified specific microbial spe-
cies or metabolic products associated with the host’s 
genetic background. These findings are expected to 
serve as potential molecular markers for future genetic 
breeding initiatives.

Methods
Experimental animals and sample collection
In this experiment, 300 healthy 40-week-old ducks 
were selected. Their weights were recorded before and 
after the experiment, and the feed intake (FI) and egg 
mass laid (EML) of each duck were recorded daily. 
The RFI was calculated using the following formula 
(In this formula, a, b, c, and μ are partial regression 
coefficients):

	 MBW = [(initial weight + final weight) /2]0.75
,

delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites 
with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota.

Conclusion  Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may 
affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.

Keywords  Duck, Residual feed intake, Metabolomics, Metagenomics, Transcriptiomics
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	RFI = FI − (µ + a × MBW + b × ∆W + c × EML)

The experimental period was 5 weeks. The ducks were 
housed in a single cage to avoid any errors caused by 
pecking each other and were free to feed and drink, 
with the ambient temperature maintained at 15–27 °C 
and the average light time at 16  h. The ducks were 
slaughtered at 45 weeks of age. The cecal contents and 
liver samples were stored at -80℃ until analysis.

Metagenomic sequencing and data processing
Microbial DNA was extracted from the Shan Par-
tridge duck samples using the E.Z.N.A.® Stool DNA 
Kit (Omega Bio-tek, Norcross, GA, U.S.) in accor-
dance with the manufacturer’s protocols. Shotgun 
metagenomic sequencing libraries were constructed 
and sequenced at Shanghai Biozeron Biological Tech-
nology Co. Ltd. In summary, for each sample, 1 μg of 
genomic DNA was sheared by a Covaris S220 Focused-
ultrasonicator (Woburn, MA, USA), and sequenc-
ing libraries were prepared with a fragment length of 
approximately 450 bp. All samples were sequenced on 
an Illumina HiSeq instrument with paired-end 150 bp 
(PE150) mode. Raw sequence reads underwent qual-
ity trimming using Trimmomatic to remove adaptor 
contaminants and low-quality reads (​h​t​t​p​​:​/​/​​w​w​w​.​​u​s​​
a​d​e​​l​l​a​​b​.​o​r​​g​/​​c​m​s​​/​u​p​​l​o​a​d​​s​/​​s​u​p​​p​l​e​​m​e​n​t​​a​r​​y​/​T​r​i​m​m​o​m​a​
t​i​c). Reads passing quality control were then mapped 
against the human genome (version: hg19) using the 
BWA mem algorithm (parameters: -M -k 32 -t 16; ​h​t​t​p​​
:​/​/​​b​i​o​-​​b​w​​a​.​s​​o​u​r​​c​e​f​o​​r​g​​e​.​n​e​t​/​b​w​a​.​s​h​t​m​l). The reads that 
removed host-genome contaminations and low-qual-
ity data were termed clean reads and used for further 
analysis.

After data quality control the species taxonomic 
annotation of clean reads was performed using 
Kraken2 software. macro genome sequences were 
assembled by Megahit software. METAProdigal was 
used for the prediction of gut microbial genes. Gene 
abundance was calculated using TPM method. The 
protein sequences of the predicted genes were sub-
sequently aligned in the databases of eggNOG and 
KEGG, respectively, and subsequently visualized. Spe-
cies abundance at each taxonomic level was counted 
using BLASTP software.

Untargeted metabolomics materials and methods
The cecal contents (100 mg) were individually ground 
with liquid nitrogen, homogenized, and resuspended 
in cooled 80% methanol containing 0.1% formic acid. 
The samples were incubated on ice for 5 min and sub-
sequently centrifuged at 15,000 rpm for 5 min at 4 °C. 
A portion of the supernatant was diluted with LC-MS 
grade methanol to achieve a final concentration of 53% 

methanol. This mixture was then transferred to a new 
Eppendorf tube and centrifuged at 15,000 g for 10 min 
at 4  °C. Finally, the supernatant was injected into the 
LC-MS system for analysis. UHPLC-MS/MS analy-
ses were performed using a Vanquish UHPLC system 
(Thermo Fisher, Germany) coupled with an Orbitrap 
Q ExactiveTM HF mass spectrometer (Thermo Fisher, 
Germany) in Biozeron Co., Ltd. (Shanghai, China). 
The samples were injected onto a Hypesil Gold col-
umn (100 × 2.1  mm, 1.9  μm) using a 17-minute linear 
gradient at a flow rate of 0.2 mL/min. The eluents for 
the positive polarity mode were eluent A (0.1% FA in 
Water) and eluent B (Methanol), while for the nega-
tive polarity mode, eluent A consisted of 5 mM ammo-
nium acetate at pH 9.0 and eluent B was Methanol. 
The solvent gradient profile was set as follows: 2% B 
for 1.5 min; a gradient from 2 to 100% B over 12.0 min; 
100% B for 2.0  min; a decrease from 100 to 2% B in 
0.1 min; and finally, 2% B for the remaining 4.9 min.

Metabolite identification was performed using 
mzCloud and mzVault and MassList primary data-
base searches. Differential metabolite screen-
ing thresholds:|log2FC| ≥ 0 & OPLS-DA_VIP ≥ 1 & 
P-value ≤ 0.05. The metabolites identified were anno-
tated using the KEGG database as well as labeled with 
differential metabolite KEGG-annotated pathway 
maps.

Transcriptomic sequencing and data processing
Total RNA was extracted from the liver tissue using 
TRIzol® Reagent according to the manufacturer’s 
instructions (Invitrogen) and genomic DNA was 
removed using DNase I (Takara).

RNA-seq transcriptome libraries were prepared fol-
lowing the TruSeqTM RNA sample preparation Kit 
from Illumina (San Diego, CA), using 1  μg of total 
RNA. After quantified by TBS380, paired-end libraries 
were sequenced by Illumina NovaSeq6000 sequenc-
ing (150  bp*2, Shanghai BIOZERON Co., Ltd). The 
raw paired-end reads were trimmed and quality con-
trolled by Trimmomatic with parameters (SLIDING-
WINDOW:4:15 MINLEN:75) (version 0.36 ​h​t​t​p​​:​/​/​​w​w​
w​.​​u​s​​a​d​e​​l​l​a​​b​.​o​r​​g​/​​c​m​s​​/​u​p​​l​o​a​d​​s​/​​s​u​p​​p​l​e​​m​e​n​t​​a​r​​y​/​T​r​i​m​m​
o​m​a​t​i​c). Then clean reads were separately aligned to 
Anas platyrhynchos reference genome with orienta-
tion mode using hisat2. Use htseq (​h​t​t​p​​s​:​/​​/​h​t​s​​e​q​​.​r​e​​a​
d​t​​h​e​d​o​​c​s​​.​i​o​​/​e​n​​/​r​e​l​​e​a​​s​e​_​0​.​1​1​.​1​/) to count each gene 
reads. The expression levels of genes between the 
two groups were calculated using the fragments per 
kilobase of exon per million mapped reads (FRKM) 
method. R statistical package edgeR (Empirical Analy-
sis of Digital Gene Expression in R, ​h​t​t​p​​:​/​/​​w​w​w​.​​b​i​​o​c​o​​
n​d​u​​c​t​o​r​​.​o​​r​g​/​​p​a​c​​k​a​g​e​​s​/​​r​e​l​​e​a​s​​e​/​b​i​​o​c​​/​h​t​m​l​/​e​d​g​e​R​.​h​t​m​l​/) 
was used to screen out ​d​i​f​f​e​r​e​n​t​i​a​l​l​y expressed genes 

http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
https://htseq.readthedocs.io/en/release_0.11.1/
https://htseq.readthedocs.io/en/release_0.11.1/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
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(DEGs). When the logarithmic fold change was greater 
than 2 and the false discovery rate (FDR) should be 
less than 0.05 was considered as DEGs between the 
two groups. To understand the functions of the dif-
ferentially expressed genes, GO functional enrichment 
and KEGG pathway analysis were carried out by Goa-
tools (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​t​a​n​g​​h​a​​i​b​a​o​/​G​o​a​t​o​o​l​s) and 
KOBAS (​h​t​t​p​​:​/​/​​k​o​b​a​​s​.​​c​b​i​​.​p​k​​u​.​e​d​​u​.​​c​n​/​h​o​m​e​.​d​o). DEGs 
were significantly enriched in GO terms and metabolic 
pathways when their Bonferroni-corrected P-value 
was less than 0.05.

Bioinformatics and statistical analysis
Co-occurrence among the bacterial taxa was analyzed 
using the SparCC program with the default settings. 
Spearman correlation analysis was performed to asso-
ciate microbial taxa with the transcriptionally active 
functions (active functions hereafter). Only the genus-
level bacterial taxa with a relative abundance > 0.1% 
and prevalence > 50% were used in the co-occurrence 
and correlation analysis, and only those with a correla-
tion coefficient of > 0.5 or < − 0.5 and a P value of < 0.05 
were used in cooccurrence network analysis. Networks 
were visualized using Cytoscape (Version 3.9.1, ​h​t​t​p​:​/​/​
w​w​w​.​c​y​t​o​s​c​a​p​e​.​o​r​g​​​​​)​. The hubs of the microbes in the 
networks were calculated using the “CytoHubba” func-
tion in the Cytoscape software based on the Maximal 
Clique Centrality (MCC) method (​h​t​t​p​​s​:​/​​/​a​p​p​​s​.​​c​y​t​​o​s​c​​a​
p​e​.​​o​r​​g​/​a​p​p​s​/​c​y​t​o​h​u​b​b​a).

Results
Animal phenotypes data analysis
To compare the HRFI group and LRFI group body 
weight (BW) and the EML were similar between the 
HRFI and the LRFI ducks (P > 0.05), but daily FI, RFI 
and feed conversion ratio (FCR) were higher (P < 0.01) 
in the HRFI ducks than in the LRFI ducks (Fig. 1A).

Metagenomic sequencing data analysis
A total of 163 Gb of data were obtained from the 
metagenomic sequencing, with 10.21 ± 1.82 GB 
per sample (Supplementary Table S1). A total of 
137.16 GB of data was retained after quality filter-
ing and removing host DNA sequences. A total of 
3,889,047 contigs were generated from de novo 
assembly (486,131 ± 83,703 per sample, N50 length of 
2,109 ± 210).

From the metagenomic sequences of bacteria 
(11,772,155 ± 2,499,903 sequences per sample), a total 
of 34 phyla, 1033 genera, and 3262 species of bacteria 
were identified (data not shown). At the phylum level, 
we select the mean relative abundance > 0.1% micro-
biomes (Fig. 1B). We found that Elusimicrobiota was 
more abundant (P < 0.05) in the HRFI ducks than in the 

LRFI ducks (Supplementary Table 2). As for the top10 
abundance of genus level, we found that none of these 
predominant bacterial genera differed in relative abun-
dance between the two duck groups (Fig.  1C). At the 
species level, we selected the top50 abundance micro-
biomes, and found a species called Bibersteinia treha-
losi (B. trehalosi) had a higher abundance (P < 0.05) in 
the LRFI ducks than in the HRFI ducks (Fig. 1D, Sup-
plement Table 2).

The metagenomic sequencing mapped a total of 5 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
level-1 pathways, 34 level-2 KEGG pathways, and 321 
KEGG level-3 pathways. In the level-3 KEGG path-
way, the “Metabolism” (47.66%), “Genetic Informa-
tion Processing” (6.85%), “Environmental Information 
Processing” (10.90%), “Cellular Processes” (9.66%) and 
“Organismal Systems” (24.92%). The level-3 KEGG 
pathway of abundance was compared and no difference 
was found between the two groups of HRFI ducks and 
LRFI ducks (Supplementary Table 3, Fig. 2A). Among 
them, the abundance of Metabolic pathways and Bio-
synthesis of secondary metabolites pathway ranks 
first and second, respectively. Clusters of Orthologous 
Groups of proteins (COG) have been a popular tool in 
microbial genome annotation. In our study, a total of 
24 functional categories were enriched. The Second-
ary metabolites biosynthesis, transport and catabo-
lism category showed significant differences between 
HRFI and LRFI groups (P < 0.05, Supplementary Table 
4, Fig. 2B). These indicate that there is a close relation-
ship between the functions, metabolism, and meta-
bolic products of microorganisms in the residual feed 
intake.

Analysis of differential metabolite data
To identify key metabolites regulated by intestinal 
commensal bacteria that may affect duck feeding, we 
performed LC-MS non-targeted metabolomics analy-
sis of the cecum contents of the Shan Partridge duck, 
and a total of 922 metabolites were identified. The 
compositions between the two groups were very simi-
lar to the PCA plots of the differences between the two 
groups (Fig.  2C), in which there were 17 metabolites 
with significant differences between the two groups. 
From the differential metabolites, we found that 
15-Deoxy-Delta-12,14-Prostaglandin J2 (15d-PGJ2), 
L Saccharopine, L Glutamate, Mehty Palmitate, and 
Deoxycholic acid are associated with the physiologi-
cal processes of fat digestion, absorption, and synthe-
sis (Fig. 2D). KEGG pathway of differential metabolites 
were primarily enriched in Lipids and lipid-like mol-
ecules, Organic acids and derivatives, Benzenoids, 
Organoheterocyclic compounds and Phenylpropanoids 
and polketides Super Class (HMDB).

https://github.com/tanghaibao/Goatools
http://kobas.cbi.pku.edu.cn/home.do
http://www.cytoscape.org
http://www.cytoscape.org
https://apps.cytoscape.org/apps/cytohubba
https://apps.cytoscape.org/apps/cytohubba
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Fig. 1  Comparison of phenotypic data and cecum bacterial taxa identified in the metagenomes between ducks with different feed efficiency. Body 
weight (BW), Residual feed intake(RFI), the daily egg mass(EML), Feed conversion rate (FCR) and actual feed intake(FI) were compared using a t test (A). 
The 10 most abundant bacterial phyla (B), 10 most abundant bacterial genera (C), and 50 most abundant bacterial species (D). The T-test was used for 
mean comparison. *P < 0.05
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Analysis of liver transcriptome data
The average total numbers of raw reads and raw bases 
in the sample were approximately 100  million and 
16  billion, respectively. The average total numbers of 
clean reads and clean bases in the sample were approx-
imately 100  million and 15  billion, respectively. The 
percent of raw reads and raw bases respectively were 
99.3% and 96.7%. The average GC content of the sam-
ples was approximately 49%, whereas the average per-
centages of Q20 and Q30 bases were 99.4% and 97.6% 
(Supplement Table 5).

The PCA can reflect the overall expression differ-
ences between groups and the degree of variation 
within samples. Our analysis results show that the 
samples clustered between groups, indicating no sig-
nificant difference between groups (Fig.  3A). Then 
we explored changes in the duck liver transcriptome 

induced by intestinal microbiota. RNA sequenc-
ing analysis revealed that 322 genes had differential 
expression (log2FC > 2, FDR < 0.05, Fig.  3B). The liver 
is the metabolic center within an animal’s body, and it 
is closely associated with the animal’s feeding behavior 
[30]. We found that genes encoding fatty acid-bind-
ing protein (FABP1, FABP3) in the liver can convert 
arachidonic acid to prostaglandin endoperoxide syn-
thase PTGS2, and genes related to lipid digestion and 
transport, secreted by the pancreas, are crucial for 
lipid metabolism. By comparing the HRFI group and 
the LRFI group, we found that FABP1 and FABP3 
showed a downward trend, while PTGS2 showed an 
upward trend. KEGG enrichment analysis of differen-
tially expressed genes revealed that Fat digestion and 
absorption in the Digestive system were significantly 
different between the two groups (P < 0.05, Fig. 3E).

Fig. 2  Metagenomic KEGG and COG pathway map and metabolomics data analysis. The different colors in the figure represent different pathways, 
and the size of the color blocks in the figure represents the average abundance (A). Metagenomic COG pathway map. The different colors in the figure 
represent different pathways, and the size of the color blocks in the figure represents the average abundance (B). PCA analysis of HRFI and LRFI duck 
metabolites (C). HRFI and LRFI ducks metabolites expression. A curated list of 922 metabolites of the cecum were analyzed the associated with possible 
effects on feed intake genes were labeled on the plot. Two vertical lines indicate gene expression fold change (HRFI vs. LRFI) > 1.2 and < − 1.2, respectively, 
and the horizontal line indicates the adjusted P value (FDR q-value) of 0.05. P values were calculated by two-sided Wilcoxon rank-sum test. The color of 
the dot represents the FDR (q-value) levels (D)
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Fig. 3 (See legend on next page.)
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Analysis of PPI network for DEGs
To identify key genes associated with RFI in duck 
liver, we selected genes from the liver transcriptome 
that were significantly enriched in 9 KEGG path-
ways (including 50 DEGs) and constructed a protein-
protein interaction (PPI) network diagram using the 
STRING database(http://string-db.org). Subsequently, 
we imported the generated PPI network into Cyto-
scape software for further analysis. We finally obtained 
29 nodes and 50 edges (Fig. 3C, Table.S6). To identify 
the core genes, we performed Cytohubba analysis on 
this PPI network and applied the MCC score method 
to select the top 10 most important core genes. The 
interleukin 6 (IL6, MCC = 70) and interleukin 10 
(IL10, MCC = 64) are located at the first two positions 
of the core genes. Then the gene colony stimulating 
factor 3 (CSF3, MCC = 24) and the gene vascular cell 
adhesion molecule 1 (VCAM1, MCC = 14) are located 
in the third and fourth respectively. The PTGS2 gene is 
listed at the fifth position in the core genes (MCC = 13, 
Fig.  3D, Supplement Table  6). Through reviewing the 
data, we know that IL6, IL10, CSF3 and VCAM1 are 
not directly related to animal feeding, so we will focus 
on PTGS2 gene.

Microbial and metabolite correlation analysis
To further understand which specific bacteria are 
involved in regulating RFI, we conducted a correlation 
analysis between the microbial communities in the 
metagenomics and the differential metabolites in the 
metabolic profile. We conducted a correlation analysis 
between the top 30 abundant microbial species in the 
metagenomics, KEGG pathways with significant dif-
ferences, and five important metabolites.

Between metabolites and the top 10 KEGG path-
ways, there are a total of 50 interactive edges. Among 
them, Amino sugar and nucleotide sugar metabolism 
has a negative correlation with Deoxycholic acid (Pear-
son Correlation Coefficient (PCC) = -0.65, P = 0.08), 
while the metabolite L Glutamate and Methyl palmi-
tate has a positive correlation with the Amino sugar 
and nucleotide sugar metabolism pathway, with PCC 
values of 0.61 and 0.60, respectively, and P values were 
0.11 and 0.33. As for the key differential metabolites 
interacting with the microbial genus level, there are 

a total of 145 interactive edges. The highest signifi-
cant positive correlation is that between Wallbacteria 
and Methyl palmitate (PCC = 0.93, P < 0.01), while the 
most significant negatively correlated relationship is 
that between Parabacteroides and L Glutamate (PCC 
=-0.92, P < 0.01, Fig. 4A). Firstly, Co-expression analy-
sis revealed that  Elusimicrobiota was inversely corre-
lated with 15d-PGJ2 levels (r = -0.86, P < 0.01, Fig. 4B), 
implicating its role in arachidonic acid metabolism. 
There was a significant positive correlation between 
Sedaonlide and the metabolite (cor = 0.74, P < 0.05). 
For the metabolite Deoxycholic acid, there was a sig-
nificant positive correlation between Drotaormibate 
and Arthropoda (P < 0.05), with a correlation coef-
ficient of 0.80 and 0.78 respectively. There was also 
a significant negative correlation between 15d-PGJ2 
and Dormibacterota (cor = -0.89, P < 0.05). the level 
of bacterial species, our study results showed that B. 
trehalosi had a significant positive correlation with 
metabolites Noroxycodone and amphetamine, with 
correlation coefficients of 0.80 and 0.76 respectively 
(P < 0.05, Fig. 4C). B. trehalosi had a highly significant 
negative correlation with the metabolite X5 Pregnan-
3.20-dione (cor = -0.86, P < 0.01).

Discussion
Feed efficiency is a critical factor in reducing the costs 
associated with livestock production and enhancing 
environmental protection [31]. RFI serves as a com-
monly employed metric for assessing feed efficiency. It 
is calculated by regressing the feed intake against the 
EML, BW and the BW0.75 [32, 33]. Research indicates 
that RFI may be connected to mechanisms related to 
feeding and digestion [34]. In recent years, an increas-
ing number of scholars have recognized the pivotal 
role of the gut microbiota in the digestion and absorp-
tion of nutrients from animal feed, which is also likely 
to influence the efficiency of feed utilization in ani-
mals [35–38].

Currently, the two predominant techniques utilized 
for acquiring knowledge about gut microorganisms 
are 16 S rRNA sequencing and metagenomic analysis. 
While 16 S rRNA sequencing primarily elucidates the 
species composition within communities, delineates 
evolutionary relationships among them, and assesses 

(See figure on previous page.)
Fig. 3  Transcriptome data analysis. PCA analysis of HRFI and LRFI duck genes (A). Differentially expressed liver genes between HRFI and LRFI ducks. A 
curated list of 338 genes of the liver were analyzed the associated with possible effects on feed intake genes were labeled on the plot. Two vertical lines 
indicate gene expression fold change (HRFI vs. LRFI) > 1.2 and < − 1.2, respectively, and the horizontal line indicates the adjusted P value (FDR q-value) of 
0.05. P values were calculated by two-sided Wilcoxon rank-sum test. The color of the dot represents the FDR (q-value) levels (B). PPI network diagram of 
liver differential genes. Nodes represent proteins. The node size and color represent the mean abundance of genes expression. Edges represent protein-
protein associations. The relationship between the 2 proteins is expressed through the thickness of the line; the thicker the line, the closer the relationship. 
The color represents the combined score, it was analysed by cytoscape (C). Hub genes and expression profiles of PPI net work. Degree is used as the 
evaluation criterion, and the darker the color of the node, the higher its Degree score (D). Pathways identified in the transcriptomes. The Wilcoxon rank-
sum test was used for mean comparison, *P < 0.05 (E)

http://string-db.org
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their diversity, metagenomic sequencing facilitates 
comprehensive investigations into genetic and func-
tional aspects based on the preliminary insights gained 
from 16 S rRNA data [39, 40]. In our investigation, we 
employed a comprehensive metagenomic approach 
to analyze the microbial composition and functional 
attributes of the microorganisms present in the cecal 
contents of ducks.

Our findings indicated that, although the HRFI and 
LRFI groups exhibited considerable similarity in their 
overall microbial colony composition, significant dif-
ferences were observed at the level of specific colonies. 
In terms of phylum levels, the top two most abundant 
phyla were the Bacteroidota and Firmicutes phylum, 
respectively, and the expression of Elusimicrobiota was 
significantly different between two groups. Méheust et 
al. have demonstrated that Elusimicrobiota is involved 
in energy production in animals [41]. We showed that 
the abundance of Elusimicrobiota is notably higher in 
the HRFI group compared to the LRFI group of ducks, 
with a statistically significant difference (P = 0.04). Our 
finding of Elusimicrobiota enrichment in HRFI ducks 
aligns with Liu [42] et al. who reported reduced Elusi-
microbiota abundance in high-performance yaks, sug-
gesting its potential role in energy partitioning.

The liver serves as the metabolic hub in animals, 
undertaking a multitude of functions including lipid 
metabolism, protein metabolism, carbohydrate metab-
olism, bile secretion, detoxification, and immune 
defense [43, 44]. Fatty acids are not merely precursors 
to numerous vital bioactive molecules, such as prosta-
cyclin, prostaglandins, and leukotrienes [45–47], but 
also constitute an essential energy source integral to 
diverse biosynthetic processes within organisms [48]. 
Studies have shown that the process of fatty acid oxi-
dation can elicit feeding behavior in rats [49]. PTGS2, 
also recognized as Cyclooxygenase-2 (COX-2), is not 
only a crucial enzyme implicated in arachidonic acid 
metabolism [50] but also the pivotal catalyst for the 
rate-limiting step in the transformation of arachidonic 
acid into prostaglandins [51]. The inherent expression 
of human COX-2 (hCOX-2) within hepatocytes may 
forestall obesity induced by high-fat diets by stimulat-
ing thermogenesis and fatty acid oxidation [52]. COX-
2 facilitates the synthesis of arachidonic acid to yield 
PGD2 [53]. As a dehydrated variant of PGD2, it can 
also modulate inflammatory response and immune 
system functions by suppressing the generation of 
other prostaglandins [54]. 15d-PGJ2 is a member of 
the prostaglandin (PG) family, which is composed 
of dehydration products of PGD2 [55, 56]. Leptin is 
a hormone produced by fat cells, one of whose func-
tions is to signal the hypothalamus to reduce feed 
intake in animals [57, 58]. Studies have shown that 

intracerebroventricular injection of 15d-PGJ2 can 
reverse the inhibitory effect of leptin on food intake 
in rats [59]. In our study of the liver transcriptome, 
among the KEGG pathways enriched within the diges-
tive system, the fat digestion and absorption pathway 
exhibited notable differences between groups. Fur-
ther, the expression of PTGS2 was significantly lower 
in the LRFI group compared to the HRFI group. Inter-
estingly, the differential metabolite 15d-PGJ2 was sig-
nificantly higher in the LRFI group compared to the 
HRFI group. Based on our results analysis, we specu-
late that the LRFI group has a higher utilization effi-
ciency of PTGS2, which leads to a higher expression 
level of 15d - PGJ2 in the LRFI group compared to the 
HRFI group, while the expression level of the PTGS2 
gene is lower. It is noteworthy that upon analyzing the 
metabolic pathways where the differential metabolites 
were located, we discovered that the key gene PTGS2 
and the significantly different metabolite 15d-PGJ2 
were both enriched in the arachidonic acid pathway 
(Fig. 5A). Furthermore, research has indicated a poten-
tial association between the metabolism of arachidonic 
acid and the RFI phenotype [60]. Although there was 
no significant difference in the enrichment of Ara-
chidonic acid metabolism pathways between the two 
groups in our transcriptome results (P = 0.08), based 
on the analysis of genes and metabolites mentioned 
above, we cannot deny its important role in regulating 
the phenotype of RFI. In the results of the correlation 
analysis between differentially expressed metabolites 
and microorganisms at the phylum level, we found that 
Elusimicrobiota showed a highly significant negative 
correlation with the metabolite 15d-PGJ2 (Fig.  4B). 
And 15d-PGJ2 was enriched in the arachidonic acid 
metabolic pathway and regulated by the gene PTGS2. 
In addition, it has been reported that PTGS2 gene can 
regulate the feeding behaviour of animals. And it has 
also been documented that in animals Elusimicrobita 
can be fermented for energy [41]. Therefore, our study 
speculated that Elusimicrobiota might affect the RFI 
and feed utilization efficiency of ducks by regulating 
the expression of liver gene PTGS2 (Fig. 5B).

Conclusions
Our research findings offer valuable insights into 
interventions at the genetic, microbial, and metabo-
lite levels that can enhance animal feed efficiency. 
These discoveries are crucial for improving animal 
feed efficiency and reducing competition for resources 
between humans and livestock. Our study suggests a 
complex interplay between the gut microbiome and 
the liver transcriptome. However, further experiments 
are required to validate our results and elucidate the 
specific underlying molecular mechanisms. Given the 
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Fig. 4 (See legend on next page.)
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current challenges in isolating and cultivating Elusimi-
crobiota using existing techniques, our experimental 
findings remain confined to the data analysis phase. 
We anticipate that advancing methodologies in the 
future will facilitate rigorous mechanistic validation of 
our proposed hypotheses.
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Fig. 4  Co-occurrence network and data association analysis. The co-occurrence network among caecum bacteria and metabolites in ducks with high 
and low feed residual intake. Relationships between caecum genus level top30 abundance microbial, significantly different top10 microbial functions 
and 5 differential metabolites related to fat metabolism. Blue edges indicate positive relationships, and red edges indicate negative relationships (A). Cor-
relation Analysis between Microbial Community Levels and Metabolic Products in the Cecum. We ranked the microorganisms at the phylum level from 
small to large, selected the top 10 phylum level bacteria with 17 differential metabolic products, and performed correlation analysis between the top 10 
abundance of species level and the top 50. B. trehalosi, which showed significant differences between the two groups. The bubble chart was plotted using 
the calculated log2 fold change (HRFI vs. LRFI) and p values. The size of the bubble indicates the statistical difference, with larger bubbles indicating more 
significant correlations. The color of the bubble represents the positive or negative correlation between the microorganisms and differential metabolic 
products. Orange represents positive correlation, while green represents negative correlation (B)

Fig. 5  Arachidonic acid pathway and pathway regulation mechanism diagram. The hub gene PTGS2 and differential metabolite 15d-PGJ2 were enriched 
in arachidonic acid metabolism pathway (A). Graphical summary of effects of intestinal microbiota on feeding behavior and phenotype in ducks (B)
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