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Abstract 

Background  The gut bacteriome influences host metabolic and physiological functions. However, its relationship 
with reproductive performance remains unclear. In this study, we evaluated the relationship between the gut bacteri-
ome and reproductive performance in beef cattle, such as Japanese black heifers. Artificial insemination (AI) was per-
formed after 300 days of age, and the number of AI required for pregnancy (AI number) was evaluated. The relation-
ship of the fecal bacteriome at 150 and 300 days of age and reproductive performance was visualized using statistical 
structural equation modelling between traits based on four types of machine-learning algorithms (linear discriminant 
analysis, association analysis, random forest, and XGBoost).

Results  The heifers were classified into superior (1.04 ± 0.04 cycles, n = 26) and inferior groups (3.87 ± 0.27 cycles, 
n = 23) according to the median frequency of AI. The fecal bacteria of the two groups were examined and compared 
using differential analysis, which demonstrated that the genera Rikenellaceae RC9 gut group and Christensenellaceae 
R-7 group were increased in the superior group. Subsequently, correlation analysis evaluated the interrelationships 
between bacteriomes, which demonstrated that the patterns exhibited distinct characteristics. Therefore, four 
machine-learning algorithms were employed to identify the distinctive factors between the two groups. The directed 
acyclic graphs carried out by DirectLiNGAM based on these extracted factors inferred that the family Erysipel-
otrichaceae and the genera Clostridium sensu stricto 1 and Family XIII AD3011 group at 150 days of age were strongly 
associated with an increase in AI number. Furthermore, a pathway involved in creatinine degradation (PWY-4722) 
at 150 days of age was related to an increase in AI number. However, bacteriomes and/or pathways at 300 days of age 
were not necessarily related to AI number.

Conclusions  In this study, a causal inference methodology was applied to investigate AI-dependent gut bacte-
rial communities in pregnant cattle. These findings suggest that AI numbers, which are crucial for beef cattle pro-
duction management, could be inferred from the fecal bacterial patterns nearly six months before the AI, rather 
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than immediately before. This study provides a novel perspective of the gut environment and its role in reproductive 
performance.

Keywords  Beef cattle, Reproductive performance, AI number, Gut bacteria, Machine learning, Causal inference

Graphical Abstract

Background
To align with the Sustainable Development Goals 
(SDGs) [1], environmentally sustainable practices must 
be implemented in contemporary livestock production. 
The reduction of feed and production costs is impera-
tive for environmentally sustainable livestock manage-
ment. In order to achieve this, it is necessary to improve 
reproductive performance and reduce the period during 
which feed is fed solely for the growth and maintenance 
of female cows [2]. Moreover, the early exclusion (ship-
ping) of unsuitable individuals from the reproductive 
programme in heifers will eliminate the need to feed the 
heifers waste feed. Consequently, enhancing reproduc-
tive performance is critical for the long-term sustainabil-
ity of the livestock industry.

In general, its well-known that reproductive traits have 
a low heritability due to environmental factors. Previous 
studies have reported that the heritability of fertility is 
low in pigs [3], dairy cattle and beef cattle [4, 5]. This may 
be attributed to the fact that fertility is largely influenced 
by environmental factors rather than genetic factors. For 
example, excessive obesity has been shown to reduce 
fertility in humans [6] and ruminants [7]. Recently, high 
plane of nutrition programs in which a large amount of 
milk replacer (MR) is fed to calves has become increas-
ingly popular. This has been shown to improve calf 
growth [8, 9]. However, there is concern that excessive 
amounts of MR may cause over-fattening of calves and 

reduce reproductive performance. Indeed, Taguchi et al. 
reported that differences in the amount of MR fed during 
the suckling period affected the concentrations of nutri-
tional metabolites in the plasma and reproductive per-
formance at the first lactation of heifers [10]. In addition, 
it has been reported to have adverse effects on fertility 
in mice with inactivated immune cells [11] and in cattle 
with immune dysfunction [12]. As such, the reproductive 
performance of cattle is likely to be greatly affected by 
their nutritional status and immune system. In humans, 
it has been established that alterations in gut microbiota 
are associated with obesity [13] and immune system [14]. 
In addition, in a microbiological point of view, there is 
a belief that symbiotic environmental microorganisms 
affect the reproduction of animals [15, 16]. Therefore, 
the gut bacteriome plays a role in reproduction [16–18] 
via the alteration in nutrient metabolism and immune 
system [19]. The role of the gut bacteriome in reproduc-
tive performance is a topic of ongoing research [20]. In 
recent years, the influence of gut microbiota on repro-
ductive dysfunction and the viewpoint of the gut micro-
biota-gonadal axis have attracted attention [17, 18]. In 
ruminants, it has been suggested that bovine vaginal and 
fecal microbiome could be used as biomarkers of bovine 
reproduction [21]. These findings suggest the importance 
of macroscopic assessment of the characteristics of the 
gut microbiota of cattle before conception. However, 
the relationship between the gut microbiota during the 
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preinsemination period and reproductive performance is 
not yet fully understood.

This study aimed to evaluate a relationship between 
the gut bacteriome and reproductive performance for 
Japanese black cattle, as a model of industrial animals. 
We conducted a comprehensive analysis of bacteriomes 
in the feces of heifers with different genetic backgrounds 
at 150 and 300 days of age (Fig. 1). It was hypothesized 
that this would allow us to evaluate some of the effects of 
symbiotic microorganisms that do not depend on genetic 

factors using heifers with different genetic backgrounds 
(Father, Grandfather, and Great Grandfather, Table  S1). 
Artificial insemination (AI) was performed after 300 days 
of age and continued until pregnancy. The relation-
ships between the number of AI required for pregnancy 
(AI number) and bacteriomes were examined via the 
machine learning (ML) algorithms and statistical causal 
inference. Based on these results, we estimated the causal 
structure of the bacterial community related to the repro-
ductive performance of the heifers. The findings of this 
study offer insights into the prediction of livestock repro-
ductive performance and efficient breeding management.

Results
Physical and reproductive performance
Table 1 shows the growth and reproductive performance 
of each group at 300  days of age. There was no signifi-
cant difference in body height (BH) or body length (BL) 
between the groups at p < 0.05, and body weight (BW) 
tended to be greater in the superior group (p = 0.07). 
However, there was no difference (p = 0.44, p = 0.55, 
p = 0.44, p = 0.85, p = 0.16, and p = 0.38; Tables S2–S7) 
in BW between the groups when the feeding patterns of 
the different MRs were compared. These results pointed 
out that the two groups with different reproductive per-
formance were not affected by a special feeding pattern. 
This also means that it is difficult to evaluate the differ-
ence with a small number of animals. The AI number 

Fig. 1  Experimental design of heifers from birth to parturition. The heifers in the experiment were fed a TMR throughout the study period, 
concentrate up to 300 days of age, milk replacer up to 90 days of age (days to weaning), and hay from weaning to 300 days of age. Following 
the collection of fecal samples, correlation analysis and machine learning were conducted based on the bacterial population data. Subsequently, 
causal inference was performed. Artificial insemination (AI) during gestation period was performed only on heifers meeting the AI physique criteria: 
body weight ≥ 270 kg and body height ≥ 116 cm [10]

Table 1  Growth and reproductive performance of the heifers 
with superior or inferior reproductive performance

The abbreviation is as follows: AI, artificial insemination

Superior Inferior

Item (n = 26) (n = 23) p-value

Age at measured (d) 304.88 ± 1.13 305.78 ± 1.10 0.35

Withers height (cm) 120.50 ± 0.85 121.22 ± 0.81 0.28

Body length (cm) 116.81 ± 1.40 114.96 ± 1.32 0.17

Body weight (kg) 315.73 ± 5.46 301.17 ± 4.35 0.07

AI number 1.04 ± 0.04 3.87 ± 0.27  < 0.01

Pregnancy rate (%)

At first AI 96.15 (25/26) – –

At second AI 3.85 (1/26) 13.04 (3/23) –

At third AI – 21.74 (5/23) –

At forth or more AI – 65.22 (15/23) –

Age at successful AI (d) 339.96 ± 5.98 468.35 ± 12.95  < 0.01
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Category R2 p value 
150d_Sup vs 150d_Inf 0.02403431 0.264 

150d_Sup vs 300d_Sup 0.20813663 0.001 
150d_Sup vs 300d_Inf 0.2846923 0.001 
150d_Inf vs 300d_Sup 0.17054637 0.001 

150d_Inf vs 300d_Inf 0.23109921 0.001 

300d_Sup vs 300d_Inf 0.01887976 0.407 

ca

b

ANOVA p<0.01

Kruskal p<0.01

*

Fig. 2  Fecal bacterial diversity in each stage. The values of (a) Chao1 and (b) Simpson as α-diversity of the bacteriome in the feces of heifers 
with superior or inferior reproductive performance were shown. Data are presented as the mean ± standard error of the mean. Asterisks (*) indicate 
significant differences between groups (p < 0.05). c The plot for non-metric multidimensional scaling (NMDS) as evaluation for β-diversity were 
visualized. Abbreviations are as follows: 150d_Sup (pink), superior group in 150d of the age; 150d_Inf (green), inferior group in 150d of the age; 
300d_Sup (orange), superior group in 300d of the age; 300d_Inf (light green), inferior group in 300d of the age. The table shows the statistical values 
calculated using the R library ‘pairwiseAdonis’

Fig. 3  Relative abundances of (a) phyla and (b) genera in the feces of heifers with superior or inferior reproductive performance. Asterisks (*) 
indicate significant differences between groups (p < 0.05)
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was significantly lower (p < 0.01) in the superior group 
(1.04 ± 0.04) than in the inferior group (3.87 ± 0.27). 
The breakdown revealed that 65.22% of inferior heifers 
became pregnant after four or more AI cycles, whereas 
96.15% of the superior heifers became pregnant during 
their first AI cycle. The results revealed that the superior 
group had a successful AI at 339.26 ± 5.98  days of age, 
approximately 130 days earlier than the inferior group 
did. The two groups presented significantly different 
reproductive performance, independent of growth per-
formance. Therefore, assuming that factors other than 
heifer growth influence reproductive performance, we 
evaluated fecal bacteriomes as follows.

Relative abundance and diversity analysis of the fecal 
bacteriomes
The alpha and beta diversity of fecal bacteriomes at 150 
and 300 days of age for each group are shown in Fig. 2. 
Chao1 values and beta diversity were not significantly 
different between groups (Fig.  2a and c). In contrast, 
Simpson values in the superior group tended to be higher 
compared with the inferior group at 150  days of age 
(Kruskal p < 0.01, Dunn p = 0.02, Fig. 2b). Although there 
was no significant difference in fecal bacteria at the phy-
lum level between the groups (Fig. 3a), the genus Rikenel-
laceae RC9 gut group at 150  days of age and the genus 
Christensenellaceae R-7 group at 300 days of age were had 

an increased abundance in the superior group than in the 
inferior group (p = 0.02 and 0.04, respectively; Fig. 3b). To 
identify differences in the relationships between the fecal 
bacteria of heifers within a group at different ages, a cor-
relation analysis was conducted on the bacterial genera 
with relative abundances greater than 10% between 150 
and 300 days of age (Fig. 4). A total of eighteen × eighteen 
relationships were observed between 150 and 300 days of 
age in the groups, with no differences in correlations for 
the same bacterial genera between the groups. However, 
among the different bacteria, the correlation coefficients 
for the superior and inferior groups were significantly 
different (p < 0.05) for nineteen relationships (Fig.  4 and 
Table  S8). These results indicate that the relationships 
between days of the same bacteria are consistent across 
groups, whereas the relationships between separate bac-
teria may vary. Thus, the interrelationships of bacteria 
differed between the groups.

Bacterial classification by ML
Although the differential analysis captured only the 
changes in a single taxon, the results of the correlation 
analysis at 150 and 300  days of age indicated that the 
relationships between the bacteria differed. Accordingly, 
given the potential for differences in the interrelation-
ships among various bacterial groups, ML was employed 
to facilitate the classification of these groups. We used 

Fig. 4  Correlation heatmaps of fecal bacterial genera between 150 and 300 days of age in heifers with superior or inferior reproductive 
performance. Eighteen bacterial genera with relative abundances greater than 10% were selected for analysis between 150 and 300 days of age. 
Yellow squares indicate the correlation coefficients that were significantly different between the superior and inferior groups
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the bacterial data on the presence ratio of 1% or more for 
these analyses.

First, linear discriminant analysis (LDA) of the physical 
score and fecal bacterial taxa at 150 and 300 days of age 
was performed, as shown in Fig. 5, to select factors that 
may influence reproductive performance. LDA revealed 
that the families Ruminococcaceae and Rikenellaceae, and 
the genus Rikenellaceae RC9 gut group increased, and the 
genus Holdemanella decreased significantly in the supe-
rior group compared with the inferior group at 150 days 
of age (Fig.  5a and b). The family Christensenellaceae, 
the genus Christensenellaceae R-7 group, the family 
Barnesiellaceae, and the genus Bacteroidales RF16 group 
increased in the superior group compared to the inferior 
group at 300 days of age (Fig. 5c and d).

Next, bacterial feature factors in 150 and 300  days 
of age were selected via three types of ML algorithms 
based on the workflow shown in Fig. S1a. The results of 
the association analysis (AA) revealed an increase in six 
bacterial taxa and a decrease in eight taxa in the supe-
rior group (Fig. S1b), and an increase in ten taxa and a 
decrease in six taxa in the inferior group at 150 days 
of age (Fig. S1c). At 300  days of age, AA revealed an 
increase in fifteen taxa and a decrease in five taxa in the 
superior group (Fig. S1d), and an increase in the five taxa 
and a decrease in the fourteen taxa in the inferior group 
(Fig. S1e). As a result, the factors selected by LDA were 
included in AA, and feature factors at 150 and 300 days 

of age were not necessarily the same. To evaluate the fea-
ture values in detail, Random Forest (RF) and XGBoost 
(XGB) were used to calculate each feature of bacteria 
selected by LDA and AA in the group (Fig.  6). The RF 
and XGB can also be applied to classifying and extract-
ing groups of important factors to classify and discrimi-
nate between multigroup [22, 23]. First, the 150d dataset 
was used as training data to analyze the prediction accu-
racy of 300d data as test data. As the result, as described 
in Fig.  6a, accurate prediction could not necessarily 
be made, and the error rates were 13.04% (300d_Inf) 
and 80.77% (300d_Sup) in RF, respectively (Prediction 
table I in Fig. 6a). In the XGB prediction, the classifica-
tion of superior group (Sup) and inferior group (Inf ) 
was successful, suggesting that those of 150d and 300d 
could not discriminate in the conditions. Although it is 
possible that the XGB algorithm identifies two groups 
(superior and inferior) from 150 days of data as a train-
ing dataset, the 150d and 300d data were discriminated 
by other LDAs and association analysis (Figs. 5 and S1). 
Therefore, in order to accurately obtain the feature fac-
tors at each age, we tried to utilize the entire dataset of 
each age. In other words, machine learning algorithms 
were here applied for the purpose to accurately select 
features for categorization under this experimental con-
dition from small dataset, rather than predicting the 
similarity of test datasets from a huge amount of train-
ing dataset. The feature factors were selected under 

Inferior
Superior

a: Rikenellaceae RC9 gut group
b: Rikenellaceae
c: Ruminococcaceae
d: Holdemanella

Superior

a: Bacteroidales RF16 group 
b: Barnesiellaceae
c: Christensenellaceae R-7 group
d: Christensenellaceae

a

b

Rikenellaceae RC9 gut group

Rikenellaceae

Ruminococcaceae

Holdemanella Bacteroidales RF16 group

Barnesiellaceae

Christensenellaceae
Christensenellaceae R-7 group

c

#

#

d

#

#

Fig. 5  Screening for potential relationships among factors via linear discriminant analysis (LDA). The LDA effect size (LEfSe) cladogram 
was visualized on the basis of the significant changes in the bacterial population calculated by LDA (p < 0.05; > twofold change) in heifers at (a) 150 
and (c) 300 days of age. Significant changes in the bacterial population were calculated using LDA (p < 0.05; > twofold change) in heifers at (b) 150 
and (d) 300 days of age. The sharp (#) indicates bacterial genera whose abundance increased in the superior group in Fig. 3. The cross (♰) indicates 
bacterial genera with significantly different correlation values in Fig. 4
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the calculation conditions (training and test data set is 
same) that achieved accuracy in distinguishing between 
two groups (superior and inferior) of each age stage. 
Therefore, the extraction of these factor groups is not 
intended to have a highly universal prediction probabil-
ity, but the features under the experimental conditions 
are exactly selected. At 150  days of age, seventeen taxa 
were selected using RF (Fig. 6b), but XGB focused four-
teen taxa of them as follows: the orders Bacteroidales 
and Corynebacteriales, the families Corynebacteriaceae, 
Erysipelotrichaceae, Lachnospiraceae, Rikenellaceae, and 
Ruminococcaceae, and the genera Alistipes, Clostridium 
sensu stricto 1, Coprococcus 3, [Eubacterium] copros-
tanoligenes group, Family XIII AD3011 group, Rikenel-
laceae RC9 gut group, and [Ruminococcus] torques group 
(Fig. 6d). At 300 days of age, nineteen taxa were selected 
using RF (Fig. 6c), but XGB focused twelve taxa of them 

as follows: the class Bacilli, the order Lactobacillales, the 
families Barnesiellaceae, Erysipelotrichaceae, and Family 
XIII, and the genera Bacteroidales RF16 group, Cateni-
sphaera, Christensenellaceae R-7 group, Clostridium 
sensu stricto 1, Holdemanella, Lachnospiraceae AC2044 
group, and Treponema 2 (Fig. 6e). These results allowed 
us to select characteristic bacteria (including the minor-
ity of bacteria, not just the predominant data on the pres-
ence ratio of 10% or more) in the superior and inferior 
groups that could not be detected by differential or cor-
relation analysis.

Causal inference for the ML‑selected bacteriome
To estimate the causal structure between reproductive 
performance and fecal bacteriomes, the direct method 
for linear non-Gaussian acyclic model (DirectLiNGAM), 
which estimates the causal structure through independent 
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Importance Importance

MeanDecreaseGini MeanDecreaseGini

a

RF 150d_Inf 150d_Sup class.error

300d_Inf 20 3 0.1304 

300d_Sup 21 5 0.8077 

XGB 150d_Inf 150d_Sup class.error

300d_Inf 23 0 0 

300d_Sup       0 26 0 

150d 300d

SupInf SupInf

150d 300d

SupInf SupInf

Feature selection to classify accurately  
two groups (Inf and Sup)

 using the AA-selected whole data in each age

training dataset test dataset

Prediction table I

Prediction table II

The following adjustment 
 to classify the groups of 150d and 300d

Fig. 6  The feature importance ranking of bacterial taxa in heifers with superior or inferior reproductive performance by the random forest (RF) 
and XGBoost (XGB) algorithms. a Treatment of training dataset and test dataset. Here, the real number datasets of AA-selected factors for 150d 
and 300d (Fig. S1) are prepared for RF and XGB. Since the AA-selected factors are slightly different between the 150d and 300d datasets, factors 
detected in at least one of these datasets are also included. The confusion matrix was shown using the 150d and 300d data as the training and test 
data sets, respectively. The tables (Prediction Tables I and II) show a confusion matrix via RF and XGB, and class. error in the table shows the error 
rate in each class of the test data set. Since the accuracy is not high, it can be shown below that an attempt is made to detect features using 
the whole data. The abbreviations are as follows: training dataset, a dataset for training via the MLs for a model; test dataset, a dataset for testing 
via the MLs to be predicted; 150d, 150 days of age after birth; 300d, 300 days of age after birth; Inf, an inferior group; Sup, a superior group; 150d_Inf, 
the data of inferior group of 150d; 150d_Sup, the data of superior group of 150d; 300d_Inf, the data of inferior group of 300d; 300d_Sup, the data 
of superior group of 300d; class. error, an error rate in each class in the table. The relative levels of the RF feature is shown in (b) 150d and (c) 300d, 
and the levels of the XGB feature can be found in (d) 150d and (e) 300d. The X-axis indicates the feature values (MeanDecreaseGini, a RF feature unit 
in (b) and (c); and Importance, a XGB feature unit in (d) and (e)). The Y-axis indicates the bacterial taxa screened by LDA and AA at 150 and 300 days 
of age. The bacterial taxa classified using LDA (Fig. 5) and AA (Fig. S1) are as follows: red bars, bacterial taxa classified into superior groups; green 
bars, bacterial taxa classified into inferior groups. The factors selected by the LDA have been underlined. The factors with dotted corrals in (d) and (e) 
show feature in case that the 150d and 300d datasets are used as the training and test dataset, respectively
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component analysis and can handle different relationship 
between traits, was performed on bacterial taxa selected 
by ML. DirectLiNGAM is used to predict the causal and/
or essential structure of a set of factors that do not neces-
sarily have a normal distribution (Gaussian distribution). 
It is known that the method provides important informa-
tion for understanding the potential highly association 
between factors and for structural inference as a group 
of important factors, not an independent factor, or not 
necessarily causal relationship [24]. The analysis revealed 
no relationship between AI number and the taxa selected 
at either the combined data of 150 and 300 days of age, 
nor the data only 300  days of age (Figs. S2 and S3). In 
contrast, DirectLiNGAM from the data of only 150 days 
of age revealed that the family Erysipelotrichaceae and 
the genera Clostridium sensu stricto 1 and Family XIII 
AD3011 group had a direct causal structure with AI 
number of 6.08, 9.45, and 157.88, respectively (Fig.  7a). 
The calculation internal standard at this time was 1.00 

for the values between the family Rikenellaceae and the 
genera Rikenellaceae RC9 gut group and Alistipes, i.e. 
all of these bacteria were not inconsistent with the fact 
that they all belong to the family Rikenellaceae. The stati-
cal value of DirectLiNGAM for Figs. 7a, S2, and S3 was 
shown in Tables S10–12. In general, DirectLiNGAM also 
indicates that the relationship is weak if the causal value 
is less than 1 and strong if it is greater than 1 [23–25]. 
Based on the hypothesis that it is possible to construct a 
structural model for three essential bacteria (family Ery-
sipelotrichaceae, genus Clostridium sensu stricto 1, and 
Family XIII AD3011 group), estimated by DirectLiNGAM 
that have a strong contribution to the AI number, the 
group comprising these four components was also vali-
dated via structural equations (Fig. S4). This calculation 
was performed using a robust estimation method that 
can accommodate non-Gaussian distribution data, and a 
fitting model was obtained to show the importance as a 
group. This model showed suitable values for the indices 

150 days of age
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Fig. 7  The calculated causal relationship of the bacteria strongly associated with reproductive performance was visualized via linear non-Gaussian 
acyclic model (DirectLiNGAM) analysis. a The arrow indicates the trend of the causal contribution. The number indicates the value of the causal 
contribution calculated via DirectLiNGAM analysis. The negative and positive values indicate the negative and positive causal contributions, 
respectively. “AI number” is displayed in underlined black bold type. Bacteria written in red indicate bacteria for which a direct relationship with “AI 
number” was observed. The sharp (#) indicates bacterial genera whose abundance increased in the superior group in Fig. 3. The cross (♰) indicates 
bacterial genera with significantly different correlation values in Fig. 4. b Relative abundance of bacterial taxa directly associated with AI number. 
The data are presented as the mean ± standard error of the mean. Relative abundances of the other bacterial taxa are shown in Fig. S5



Page 9 of 15Taguchi et al. Animal Microbiome            (2025) 7:33 	

(chi-square statistic (Chisq) = 1.161, p = 0.28; robust com-
parative fit index (CFI.robust) = 0.99; root mean square 
error of approximation (RMSEA) = 0.00; standardized 
root mean square residual (SRMR) = 0.04; goodness-of-
fit index (GFI) = 0.993). Furthermore, differential analy-
ses comparing these important factors demonstrated no 
statistical significance between the two groups at cor-
responding age of day, yet statistical significance was 
observed between different age of day (Fig.  7b). The 
results of differential analyses of the other bacterial taxa 
were shown in Fig. S5. Based on these results, a group of 
that are computationally feature factors under the experi-
mental conditions in this study have been estimated at 
150 days of age.

Causal inference for the metabolic pathways predicted 
using Picrust2
Figure  8a and b show the pathways predicted using the 
16S rRNA sequence data from the fecal bacteria with 
significant changes in the superior and inferior groups, 
respectively, via volcano plots. The pathways selected for 
a false discovery rate (FDR) < 0.1 at 150 days of age were 
PWY-6906, PWY-622, VALDEG-PWY, and PWY-4722, 

and those at 300 days of age were PWY-5178, PWY-5430, 
PWY-5266, PWY-5273, PWY-6397, PWY-6383, and 
PWY-1G-0 (Fig. 8a and b, Table S9). We then estimated 
the causal structure of the pathways selected from com-
bined data of 150 and 300  days of age and AI number 
(Fig.  8c). The results of the Shapiro–Wilk test revealed 
that all these factor groups were statistically non-nor-
mally distributed (p < 0.05). Therefore, assuming a non-
normal distribution, DirectLiNGAM was applied to AI 
number. The internal standard at this time was − 1.00 for 
the values of “150d” and “300d,” which exhibited precisely 
the opposite characteristics [24]. AI number had a strong 
positive relationship with PWY-6383 and PWY-4722 
(coefficient = 67,441.82, 223,231.81) and a strong nega-
tive relationship with PWY-5178 and PWY-6397 (coef-
ficient = − 462,237, − 100,669). Furthermore, differential 
analyses comparing these pathways showed that no sta-
tistically significant variations were identified between 
the two groups at corresponding age of day; however, 
statistically significant variations were identified between 
different age of day (Fig.  8d). The results of the analy-
sis by each day of age revealed that PWY-4722 had a 
direct causal structure with AI number at 150 days of 
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age (coefficient = 288,852.57, Fig. S6), whereas no causal 
structure with AI number was found at 300 days of age. 
The statical value of DirectLiNGAM for Figs. 8c and S6 
was shown in Tables S13-14.

Discussion
Although the gut bacteriome influences the metabolic 
and physiological functions of the host and is thought to 
affect reproductive performance in monogastric animals 
[20], its relationship with reproductive performance in 
cattle is unclear. In this study, we comprehensively evalu-
ated the relationship between the fecal bacteriome at 150 
and 300 days of age and reproductive performance after 
300 days of age. Using ML and causal inference, the char-
acteristics of the fecal bacteria that influence reproduc-
tive performance were estimated as follows.

In general, the first AI is performed once the heifers 
have achieved the physical criteria set by each farm to 
avoid calving accidents and dystocia. In addition, previ-
ous studies have reported a positive curvilinear relation-
ship between BW and reproductive performance in dairy 
heifers [26]. However, in this study, although there was no 
significant difference in BW, BH, or BL (p > 0.05; Table 1), 
AI number was significantly lower in the superior group, 
and the days of successful AI were significantly earlier 
than those in the inferior group were (Table  1). There-
fore, this study investigated the relationship between the 
gut bacteriome and reproductive performance among 
heifers with the same pre-breeding physical size but dif-
ferent pregnancy success rates per AI.

First, to evaluate whether the fecal bacterial population 
differed in terms of reproductive performance, we ana-
lysed bacterial diversity and the relative abundance in the 
fecal bacteriome at 150 days of age (the rearing period) 
and 300 days of age (the preinsemination period) (Fig. 2). 
The results revealed that the fecal bacterial diversity was 
greater in the superior group than in the inferior group. 
In addition, the relative abundance of the genus Rikenel-
laceae RC9 gut group at 150  days of age and the genus 
Christensenellaceae R-7 group at 300  days of age was 
greater in the superior group than that in the inferior 
group (Fig. 3). Fecal diversity has been shown to be lower 
in obese patients than in healthy individuals [27]. Inter-
estingly, elderly Italians with a greater abundance of the 
families Rikenellaceae and Christensenellaceae in their 
fecal bacteriomes presented a reduction in BW, body 
mass index, visceral adipose tissue, and subcutaneous 
adipose tissue [28]. Obesity negatively affects the repro-
ductive performance of monogastric [6] and ruminant 
animals [7]. Although the results of this study did not 
reveal significant differences in physical size at 300 days 
of age between the groups (Table 1), the increase in these 

fecal bacteria suggests an obesity status that cannot be 
determined from an external appearance and may have 
affected subsequent reproductive performance, i.e., AI 
number. Furthermore, correlation analysis among bac-
teria whose relative abundance was greater than 10% at 
the genus level revealed that some fecal bacterial rela-
tionships differed between the two groups (Fig.  4 and 
Table S8).

Therefore, to further characterize the relationship 
between reproductive performance and fecal bacteriome, 
we performed ML and causal inference. As a result, we 
were able to select a characteristic group of bacterial taxa 
that could not be identified via differential analysis as 
candidates for bacteria that may have a positive or nega-
tive effect on reproductive performance. We performed 
RF and XGB analyses for the bacterial taxa selected using 
LDA (Fig.  5) and AA (Fig. S1). The RF results revealed 
that seventeen and nineteen taxa were characteristic of 
the superior and inferior groups, respectively, at 150 days 
of age and 300 days of age (Fig. 6b and c). Further refine-
ment by XGB indicated that fourteen and twelve taxa 
were selected at 150 and 300  days of age, respectively 
(Fig.  6d and e). DirectLiNGAM was performed to infer 
the statistical causal structure as a structural equation 
modelling (Fig. 7a). The essential structure estimated by 
DirectLiNGAM was consistent with the results of ML 
(Figs. 5, 6, and S1) and a structural equation model with 
the robust estimation (Fig. S4). Specifically, at 150  days 
of age, the family Erysipelotrichaceae and the genera 
Clostridium sensu stricto 1 and Family XIII AD3011 
group presented strong causal structures with AI num-
ber (coefficients = 6.08, 9.45, and 157.88, respectively), 
computationally indicating that these bacteria increase 
AI number. The genus Clostridium sensu stricto 1 has 
been reported to be positively correlated with BW and 
serum lipid indices in Chinese adults [29]. The family 
Erysipelotrichaceae has been linked to weight gain and an 
increased risk of developing obesity, cancer, and autoim-
mune disorders of the nervous system [30, 31]. In addi-
tion, the genus Family XIII AD3011 group, which was 
selected as a negative factor at 150  days of age (Fig.  6b 
and d), is known to be involved in inflammation and dis-
ease owing to abnormalities in the gut bacteriomes [32]. 
Therefore, an increase in these bacterial taxa may nega-
tively affect reproductive performance due to metabolic 
diseases, inflammation, and gut bacteriome-derived dis-
eases. The genus Rikenellaceae RC9 gut group exhibited 
a higher relative abundance in the superior group com-
pared to the inferior group at 150 days of age (Fig. 3) and 
included the indirect causal relationship with AI number 
(Fig. 7a), indicating that Rikenellaceae RC9 gut group may 
be associated with a reduction in AI number. Further-
more, the genus Clostridium sensu stricto 1 at 150 days 
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of age, which demonstrates a strong causal structure with 
AI number (Fig.  7a), exhibits a significantly disparate 
correlation coefficient with the genus Lachnospiraceae 
NK3A20 group at 300  days of age between the groups 
(Fig. 4 and Table S8). Considering the absence of a causal 
structure between the genus Lachnospiraceae NK3A20 
group at 300 days of age and AI number (Fig. S3), as well 
as the lack of a significant difference in the abundance of 
the genus Lachnospiraceae NK3A20 group at 300  days 
of age between the groups, it can be postulated that the 
genus Clostridium sensu stricto 1 at 150 days of age may 
be related to an increase in AI number. Interestingly, 
the family Ruminococcaceae, an essential factor selected 
in this study, is associated with reduced visceral fat in 
humans [28]. Notably, a direct causal relationship was 
not observed between the administration of the probi-
otic thermophile Caldibacillus hisashii during the pre-
weaning period (at least from 4 to 90  days of age) and 
AI number, the family Erysipelotrichaceae and the gen-
era Clostridium sensu stricto 1 and Family XIII AD3011 
group (AI number-regulated core bacterial group). As 
previously reported [33], the administration of C. hisashii 
period modulates the fecal bacterial populations of post-
weaning calves. In the present study, the calculated 
results for the conditions under which C. hisashii was 
introduced for a short period of time in the pre-weaning 
period excluded C. hisashii (Fig. S7 and Table S15) from 
the causal structure around the AI number in Fig.  7. In 
other words, it is possible that the short-term administra-
tion of C. hisashii only in the pre-weaning period has no 
impact on the relationship for the AI number-regulated 
core bacterial group; and then, the presence of a poten-
tial pre-weaning probiotic-independent central rela-
tionship between reproductive performance and the AI 
number-regulated core bacterial group was suggested. 
Based on these results, it is possible that the bacterial 
taxa selected by ML and causal inference influence repro-
ductive performance through the metabolic state and gut 
environment of the host. Furthermore, it may be possi-
ble to estimate subsequent reproductive performance 
by identifying the proportion of these bacterial taxa pre-
sent at 150 days of age. On the other hand, no relation-
ship with AI number was observed for the bacterial taxa 
at 300 days of age. Thus, it was predicted that the bacte-
riome at 150 days of age would be more likely to have a 
strong association with AI number than that at 300 days 
of age.

Picrust2 was implemented to predict pathway data 
based on the sequence data of the bacterial 16S RNA 
genes. We compared pathway data between the two 
groups to evaluate the metabolic function of the fecal 
bacteriome. Volcano plot analysis revealed the impor-
tance of four pathways with significant differences at 

150 days of age, and nine pathways differed between the 
two groups at 300 days of age (Fig. 8a and b, Table S9). 
The statistical causal inferences were performed by 
DirectLiNGAM for these pathways and AI frequency 
for the 150- and 300-day data, and the pathways that 
showed strong positive causality with AI number were 
PWY-6383, which synthesizes components of the myco-
bacterial cell wall (mono-trans and poly-cis decaprenyl 
phosphate), and PWY-4722, which degrades creatinine. 
In addition, the pathways that showed a negative corre-
lation with AI number were PWY-5178, which degrades 
toluene, and PWY-6397, which biosynthesizes the myc-
olyl-arabinogalactan-peptidoglycan complexes necessary 
for the survival of Mycobacterium tuberculosis (Fig.  8c). 
Causal inference was then performed by day of age, and 
it was estimated that PWY-4722 was strongly associ-
ated with an increase in AI number at 150  days of age 
(Fig. S6). Since metabolic pathways in the gut bacteri-
ome generally function when the starting factor for the 
pathway is present or when the bacteria responsible for 
metabolism are present, it is possible that fecal creatinine 
is reduced in the superior group. In humans, concentra-
tions of creatinine in the blood decrease after pregnancy 
[34]. In addition, the Suffolk breed of sheep, which has 
a low reproductive capacity, has a low ability to excrete 
creatinine [35]. Therefore, creatinine is thought to have 
a negative effect on the maintenance of pregnancy. In 
other words, the reduced fecal creatinine in the supe-
rior group may have resulted in the reduced expression 
of PWY-4722, allowing fewer AI number. Based on the 
results of the predicted metabolic pathway, it is possible 
to estimate the subsequent reproductive performance of 
heifers by examining the expression levels of creatinine 
and PWY-4722 at 150 days of age. In contrast, no meta-
bolic pathways associated with AI number were observed 
in the causal inference at 300 days of age or in the bacte-
rial analysis. In addition, the bacteriomes and metabolic 
pathways predicted by fecal bacteria at 150  days of age, 
compared with those at 300 days of age prior to AI, are 
more strongly associated with an increase in AI number. 
Thus, these observations suggest that differences in the 
gut bacteriome of heifers and their predicted metabolic 
pathways may also affect the functional aspects of the 
host, with potential consequences for subsequent repro-
ductive performance.

In this study, multiple ML algorisms followed by struc-
tural equation modelling were used to narrow down the 
important factor groups, and grouping with a high accu-
racy rate was made possible at the bacterial level and at 
the metabolic pathway level based on bacterial data. 
These results do not always indicate accurate causal rela-
tionships themselves, but essential groups that be beyond 
the increase or decrease of individual factors. Needless 
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to say, since these are only computational features under 
the experimental conditions of this study, further experi-
mental verification is necessary. If this experimental con-
dition is considered as an aid to universal evaluation, 
this study suggested that it is possible to select breeding 
female heifers that are more likely to be fertile from the 
gut bacteriomes at an early stage. This approach could 
facilitate more efficient management of livestock. The 
results of this study will contribute to improvements in 
animal welfare, industrial animal management, and ani-
mal science in the future.

Conclusions
The present study successfully demonstrated that the 
fecal bacteriomes of heifers prior to AI were associated 
with AI number, using Japanese black cattle as a model of 
reproductive animals. To the best of our knowledge, this 
is the first study to use ML and causal inference to ana-
lyse the relationship between the fecal bacteria of heifers 
and subsequent reproductive performance and to extract 
bacterial taxa that may influence fertility. The results of 
this study suggest that gut bacteriomes during the post-
weaning growing phase are more strongly associated 
with reproductive performance than those just prior to 
AI. The results indicate that it may be possible to predict 
subsequent fertility at least five months before the first 
AI. On the other hand, these results suggest that rather 
than a single bacterium affecting reproductive perfor-
mance, multiple groups of bacteria act together to alter 
reproductive performance. Consequently, it is essen-
tial to develop a methodology that holistically assesses 
fluctuations in the abundance of multiple bacterial spe-
cies rather than focusing on a single bacterial strain to 
establish a reliable approach for predicting reproductive 
performance. Therefore, further research should be con-
ducted with different target animals under different envi-
ronmental conditions. This research approach provides a 
foundation for the development of new technologies to 
increase the productivity of livestock animals by elucidat-
ing the interrelationship between the gut bacteriome and 
reproductive performance and by predicting subsequent 
fertility.

Methods
Animals and sample collection
All heifers used in this study were reared at a commer-
cial farm in Miyazaki, Japan, which specializes in the 
production of Japanese black cattle. The experiments 
were performed as shown in Fig. 1. Ninety-three heifers 
were separated from dams at 4 days of age and admin-
istered MR (DM877, Dotoh Shiryo Co. Ltd., Hokkaido, 
Japan) from 4–90 days of age. All heifers were randomly 
assigned to six MR feeding plans (P1 and P2, maximum 

1,600  g/d × 40 d; P3, maximum 1,800  g/d × 60 d; P4, 
maximum 1,800 g/d × 41 d; P5, maximum 1,400 g/d × 40 
d; and P6, maximum 1,360  g/d × 30 d). Heifers were 
allowed to freely feed on the following total mixed ration 
(TMR): TMR-A [20.0% (w/w) crude protein (CP), 2.0% 
(w/w) crude fat, 75.0% (w/w) total digestible nutrients 
(TDN)], TMR-B [12.5% (w/w) CP; 2.0% (w/w) crude fat; 
60.0% (w/w) TDN], TMR-C [17.0% (w/w) CP, 2.0% (w/w) 
crude fat, 71.0% (w/w) TDN], and TMR-D [10.9% (w/w) 
CP; 1.6% (w/w) crude fat; 60.4% (w/w) TDN]. The TMRs 
were fed at 31–150 days, 151–210 days, 211–540 days of 
age, and 541  days of age and older. Concentrates [17% 
(w/w) CP, 2% (w/w) crude fat, and 71% (w/w) TDN] 
were fed ad  libitum at 181–300  days of age, while oats 
and timothy were supplemented at 0.1–0.5  kg/head/d 
from 91–300  days of age. In addition, the heifers from 
P2, P3, P4, and P5 were supplemented with Caldibacillus 
hisashii from 4–90 days of age during preweaning period, 
as described previously [33]. Body weight, BH, and 
BL were measured at 305.3 ± 0.8  days of age. Artificial 
insemination was only performed on heifers that met the 
physique criteria of BW > 270  kg and BH > 116  cm [10]. 
Artificial insemination was repeated until pregnancy 
was confirmed. Heifers with different genetic back-
grounds were selected for this study (n = 49, Table  S1). 
The experimental groups were assigned according to AI 
number as follows (Tables S2–S7): superior (n = 26), i.e. 
P1 (n = 7), P2 (n = 4), P3 (n = 4), P4 (n = 4), P5 (n = 4), and 
P6 (n = 3) as the number of heifers that required less than 
the median AI number (one AI when the median was 
one) for each MR feeding pattern; inferior (n = 23), i.e. P1 
(n = 4), P2 (n = 4), P3 (n = 4), P4 (n = 4), P5 (n = 4), and P6 
(n = 3) as the number of heifers that required a median or 
greater AI number. To reduce the effects of different MR 
feeding regimens, at least six heifers (three heifers per 
group) were selected from each feeding regimen. When 
there were four or more heifers with the same AI score, 
heifers with the same pedigree as the other group were 
selected preferentially to prevent variation in the genetic 
background between the superior and inferior groups. 
Fecal samples from heifers were collected at 10:00 AM (at 
least 2.5 h after the morning meal) at 150 and 300 days 
of age via a fecal collection tube (Sarstedt AG & Co. KG, 
Germany). All fecal samples were stored at − 30 °C until 
further analysis. All data collection and sampling were 
performed as a routine part of daily farm management to 
monitor the health status of the cattle.

Meta‑sequence analysis of bacterial 16S rRNA gene 
sequences
DNA was extracted from the fecal samples of heifers in 
the superior and inferior groups via the QIAamp Pow-
erFecal DNA Kit (QIAGEN N.V., Inc., Hilden, Germany) 
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according to the manufacturer’s protocol. DNA con-
centrations were evaluated via a Quant-iT™ PicoGreen 
dsDNA Assay Kit (Thermo Fisher Scientific, Tokyo, 
Japan). The nucleotide sequence of the V3-V4 region 
(314F-806R) of the bacterial 16S rRNA gene was deter-
mined using QIIME2 (https://​docs.​qiime2.​org/) [36]. In 
brief, feature-classifier was performed after the control 
or denoising of the sequence data with DADA2. The clas-
sifier was performed using SILVA_132 as the reference 
genome database (SILVA_132) under the default condi-
tion. Filtering of 10 total counts or less (p-min-frequency 
10) and elimination of mitochondria and chloroplasts 
(p-exclude mitochondria, chloroplast) were also per-
formed. Subsequent analyses were proceeded using the 
obtained data files. Based on the distribution of OTUs 
among samples, β-diversity was estimated by non-met-
ric multidimensional scaling (NMDS). The statistical 
analysis of these NMDS values was performed using the 
library “vegan” (distance = ”bray”) and “pairwiseAdonis” 
in the R software package. The plot was visualized by the 
library “ggplot2”.

Correlation analysis
Relative values of major fecal bacteria (more than 10% of 
abundances) were visualized by constructing a correla-
tion heatmap via the package “gplots” in the R software 
(version 4.4.0) after Pearson correlation coefficients were 
calculated as previously reported [25, 33]. Significant dif-
ferences in correlation coefficients between the superior 
and inferior groups were calculated via Fisher’s Z trans-
form [37], and p-values were subsequently calculated via 
the Microsoft Excel function: = 2 × (1 − NORMSDIST(Z)) 
as previously described [38, 39].

Machine learning methods
This study conducted four types of ML as follows.

Linear discriminant analysis (LDA) is an elementary 
method of supervised ML. Here, LDA score plots and 
the cladogram based on LEfSe were visualized by Galaxy 
(https://​hutte​nhower.​sph.​harva​rd.​edu/​galaxy/) as previ-
ously described [25]. In brief, the value provided an LDA 
cladogram and LDA score plots for the factorial Kruskal‒
Wallis test among classes and the value for the pairwise 
Wilcoxon test between subclasses (set at 0.05) as nonpar-
ametric analyses. The pairwise comparisons among sub-
classes to be performed only among subclasses with the 
same name were set to “Yes”. The strategy for multiclass 
analysis was set to “All-against-all (more strict)”.

Association analysis is a basic unsupervised learn-
ing technique that is used in market research and envi-
ronmental analysis. This analysis was applied to classify 
binarized data beyond the logic of real numbers [40, 41]. 
Binarized data allow different categories of factor groups 

(e.g., physical performance and bacterial population) to 
be treated for the same calculation. Here, data on physical 
performance and fecal bacterial population were dichot-
omized on the basis of the median value (M) of the data 
and sorted as 0 (≤ M) or 1 (> M) as the binarized data for 
subsequent analysis. We classified causal influences as 
x and y. The probability (P) was defined as follows: sup-
port (x ⇒ y) = P(x ∩ y), confidence (x ⇒ y) = P(x ∩ y)/P(x), 
and lift (x ⇒ y) = P(x ∩ y)/P(x)P(y). Association rules were 
determined using reference values for support, confi-
dence, and lift values (support ≥ 0.1, confidence ≥ 0.6, and 
lift value ≥ 1.2). The R software (https://​cran.r-​proje​ct.​
org) packages “arules” and “aruleViz” were used. Associa-
tive networks were drawn with Force Atlas 2 via Noverlap 
in Gephi 0.10.1 (https://​gephi.​org).

Furthermore, feature factors of the bacterial data were 
extracted via two types of supervised ML: RF, ML with 
bagging (bootstrap aggregation), and XGB, ML with 
extreme gradient boosting. Feature factors were selected 
via the R software library packages “randomForest” and 
“xgboost” [24, 42]. In this study, the RF parameter was 
set to “doBest = TRUE” to check the model. The param-
eter “proximity = TRUE” was used to calculate the values 
of MeanDecreaseGini, a RF index. The XGB parameters 
were set to “objective = multi:softmax” and “eval_met-
ric = mlogloss” for multi-class classification to compute 
Importance, a XGB index.

Causal inference
The direct method for the linear non-Gaussian acyclic 
model (DirectLiNGAM) [24, 40, 42], which estimates the 
causal structure through independent component analy-
sis, was used to calculate causal inference. As previously 
described, the families and genera selected by ML were 
not separated and used for the calculation even if they 
had the same attributes, since the calculated results could 
be evaluated as an internal standard [24, 25]. As a result, 
the calculation results were confirmed to be close to 1 
for data of the same attribute. DirectLiNGAM (https://​
github.​com/​cdt15/​lingam) was developed via Python 
(version 3.10.8) on Mac OS Sequoia (version 15.3) as fol-
lows: the Python libraries numpy (version 1.26.4), pandas 
(version 2.2.3), matplotlib (version 3.9.2), scikit-learn (ver-
sion 1.6.1), lingam (version 1.8.0), and graphviz (version 
0.19.1). The calculated data were visualized as directed 
acyclic graphs (DAGs) via Gephi (version 0.10.1) (https://​
gephi.​org). In addition, the main structure of the complex 
causal model derived from the DirectLiNGAM approach 
was statistically evaluated via structural equations. Struc-
tural equation modelling (SEM) was performed on a 
group of components with a large number of directed 
acyclic graphs (DAGs). For the selected components, 
SEM was conducted via the library package “lavaan” of 

https://docs.qiime2.org/
https://huttenhower.sph.harvard.edu/galaxy/
https://cran.r-project.org
https://cran.r-project.org
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the R software as previously reported [24, 40–42]. The 
models used as hypotheses were statistically estimated 
via the robust maximum likelihood estimator ‘mlr’ of the 
“lavaan”. The optimal model was assessed by the p-value 
of Chisq (p > 0.05, nonsignificant), CFI.robust (> 0.95), 
RMSEA (< 0.05), SRMR (< 0.05), and GFI (> 0.95) as indi-
ces of good model fit. The path diagram of the optimal 
model was visualized via the layout function ‘tree’ of the 
package “semPlot” in the R software.

Pathway analysis
Metabolic pathway predictions were performed via the 
PICRUSt2 algorithm (https://​github.​com/​picru​st/​picru​
st2) [43]. The relative values of predicted pathways were 
evaluated via the library packages “limma” and “edgeR” 
in the R software. Volcano plots were generated via the 
library package “ggplot2”. The estimated structures of the 
significant screened pathways (FDR < 0.1) were visualized 
via DirectLiNGAM as described above.

Statistical analysis
The alpha diversity, relative abundances of dominant and/
or characteristic bacteria (> 1% of the detected commu-
nity for relative abundance analysis), and relative values of 
predicted pathways were analysed via the R software (ver-
sion 4.4.0). The Gaussian distribution of the abundance 
was evaluated via the Shapiro‒Wilk test to select between 
parametric and nonparametric analyses. Student’s t-test 
or Welch’s t-test was used as a parametric test following 
the evaluation of equal variances. The Wilcoxon rank-sum 
test was used for nonparametric tests. Tukey–Kramer 
test following ANOVA (Shapiro–Wilk test, p > 0.05) and 
Dunn’ test following Kruskal–Wallis test (Shapiro–Wilk 
test, p < 0.05) were used for parametric and non-para-
metric tests. Significance and tendencies were declared at 
p < 0.05 and 0.05 ≤ p < 0.10, respectively. All data are pre-
sented as the mean ± standard error of the mean.
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