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Abstract
Background  The gut microbiome plays a crucial role in health and disease, influencing digestion, metabolism, 
and immune function. Traditional microbiome analysis methods are often expensive, time-consuming, and require 
specialized expertise, limiting their practical application in clinical settings. Evolving artificial intelligence (AI) 
technologies present opportunities for developing alternative methods. However, the lack of transparency in these 
technologies limits the ability of clinicians to incorporate AI-driven diagnostic tools into their healthcare systems. 
The aim of this study was to investigate an AI approach that rapidly predicts different bacterial genera and bacterial 
groups, specifically butyrate producers, from digital images of fecal smears of rhesus macaques (Macaca mulatta). In 
addition, to improve transparency, we employed explainability analysis to uncover the image features influencing the 
model’s predictions.

Results  By integrating fecal image data with corresponding metagenomic sequencing information, the deep 
learning (DL) and machine learning (ML) algorithms successfully predicted 16 individual bacterial genera (area 
under the curve (AUC) > 0.7) among the 50 most abundant genera in rhesus macaques (Macaca mulatta). The model 
was successful in predicting functional groups, major butyrate producers (AUC 0.75) and a mixed group including 
fermenters and short-chain fatty acid (SCFA) producers (AUC 0.81). For both models of butyrate producers and mixed 
fermenters, the explainability experiments revealed no decline in the AUC when random noise was added to the 
images. Increased blurring led to a gradual decline in the AUC. The model’s performance was robust against the 
impact of fecal shape from smearing, with a stable AUC maintained until patch 4 for all groups, as assessed through 
scrambling. No significant correlation was detected between the prediction probabilities and the total fecal weight 
used in the smear; r = 0.30 ± 0.3 (p > 0.1) and r = 0.04 ± 0.36 (p > 0.8) for the butyrate producers and mixed fermenters, 
respectively.
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Background
The gut microbiome plays a pivotal role in shaping 
mammalian health and susceptibility to disease [1, 2]. 
It influences a wide range of physiological processes, 
including digestion, nutrient absorption, metabolism, 
immune function, and even behavior [3–5]. Disrup-
tions in microbiome composition and function, known 
as dysbiosis, have been linked to various diseases, such 
as inflammatory bowel disease [4, 6–8].

Dysbiosis has been implicated in the development of 
diarrhea in nonhuman primates (NHPs) [9]. In captive 
NHPs, such as rhesus macaques (Macaca mulatta), 
diarrhea is a common health and welfare concern [10–
12]. A better understanding of their microbiome func-
tions will improve healthcare interventions and welfare 
in these captive populations [1, 2, 9, 13]. Although gut 
microbiome analysis is a commonly used method in 
NHPs, these techniques are expensive, time-consum-
ing, and require specialized laboratory facilities and 
bioinformatics expertise. This limits its accessibility 
for routine clinical use, especially in veterinary prac-
tice [9, 13–17]. The clinical interpretability of this 
intricate microbiome dataset can be improved by iden-
tifying functional groups, such as bacterial popula-
tions that ferment dietary fibers and thereby produce 
butyrate. Butyrate, a key short-chain fatty acid (SCFA), 
is essential for maintaining intestinal health. It serves 
as a primary energy source for colonocytes, reduces 
inflammation, and supports gut barrier integrity, con-
tributing to overall gut health [18, 19].

Microbiome research has been revolutionized with 
the use of artificial intelligence (AI). Subsets of AI, 
such as machine learning (ML) and deep learning 
(DL), have proven to be efficient in analyzing complex 
and large datasets [20]. ML and DL can offer selection, 
biomarker identification, disease prediction, and treat-
ment recommendations, providing insights into micro-
biome structure and dynamics [21, 22]. Thus, ML 
has been used to explore the predictive power of the 
microbiota in relation to animal phenotypes in rumi-
nants and dogs [23–25]. In addition, DL has been used 
to identify eukaryotic sequences in biomass from the 
rumen [9]. These methods rely on the metagenomic 
sequencing data of the targeted microbiome. The abil-
ity to profile the intestinal microbiome by using only 
an image of a fecal smear would allow a predictive, 

preventative, and personalized approach for health 
monitoring. Recent studies have demonstrated that AI 
models can analyze images of fecal samples to assess 
microbiome composition [26–29]. By leveraging algo-
rithms, these models can capture subtle visual cues 
linked to microbial communities, providing clinically 
relevant insights into gut health without extensive lab-
oratory work.

Beyond its efficiency, explainability in AI is cru-
cial in healthcare because it enhances trust by mak-
ing the AI decision-making process transparent. This 
transparency allows healthcare professionals to clearly 
understand how AI-derived outcomes are formulated, 
ensuring the reliability and scientific validity of these 
technologies [30]. Furthermore, identifying the fea-
tures driving the model’s predictions increases confi-
dence in its outputs so that the results are biologically 
meaningful.

Here, we present an advanced ML- and DL-based 
method for the rapid identification of key bacterial 
genera and functional groups, specifically major butyr-
ate producers, from digital images of fecal smears of 
rhesus macaques. By integrating fecal imaging with 
learning algorithms that have been trained on corre-
sponding metagenomic sequencing data, our approach 
can predict key microbial genera and functional 
groups with high accuracy. To explore the interpret-
ability and trustworthiness of our model, we employed 
explainability analysis to uncover the image features 
influencing the model’s predictions with respect to the 
smearing method, sample weight, and random noise. 
Profiling the microbiome with this ML- and DL-based 
method has the potential to significantly reduce the 
cost of assessing the impact of drugs or nutritional 
interventions on the microbiome.

Methods
Animal subjects, housing, and care
This study utilized fecal samples from a cohort of 14 
rhesus macaques (Macaca mulatta) involved in a 
broader research project on gastrointestinal health 
and nutrition at the Biomedical Primate Research Cen-
tre (BPRC, Rijswijk, The Netherlands), as described 
in detail in Maaskant et al., 2024 [13]. The macaques 
were fed a diet of commercial monkey pellets sup-
plemented with fresh fruits, vegetables, and grains. 

Conclusion  Our approach demonstrated the ability to predict a wide range of clinically relevant microbial genera 
and microbial groups in the gut microbiome based on digital images from a fecal smear. The models proved to be 
robust to the smearing method, random noise and the amount of fecal matter. This study introduces a rapid, non-
invasive, and cost-effective method for microbiome profiling, with potential applications in veterinary diagnostics.

Keywords  Microbiome, SCFA, Monkeys, Gut health, Artificial intelligence, Diet, Diarrhea, Butyrate producer, 
Explainability analysis
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Comprehensive electronic health records were main-
tained for each animal throughout the study.

Fecal sample collection
The fecal samples were serially collected from 2020 to 
2022, adhering to a standardized collection protocol. 
Food colorants and glitters were used as dietary mark-
ers to distinguish individual fecal samples from socially 
housed macaques. All animals received dietary markers 
in alternating sequences to exclude a possible influence 
from these identification methods. The dietary markers 
were fed to the animals in the afternoon, and the next 
morning, fecal samples were collected between 9:00 AM 
and 11:00 AM to minimize variability. Each sample was 
divided into three aliquots of approximately 1 gram each. 
For microbiome sequencing, aliquots were immediately 
frozen at -80 °C. The remainder of the fecal samples were 
intended for imaging and were stored at -20  °C until 
analysis.

DNA extraction and metagenomic sequencing
Total genomic DNA was extracted from the fecal samples 
using a modified protocol designed for high throughput 
and purity. Briefly, 150 µL of each sample was combined 
with 500 µL of 0.1  mm zirconium beads and 800 µL of 
lysis buffer (CD1 solution from the DNeasy 96 PowerSoil 
Pro QIAcube HT Kit). Mechanical lysis was performed 
through bead beating for two cycles of 2 min each, with 
cooling on ice between cycles. Following centrifugation 
to remove debris, the supernatant was mixed with bind-
ing buffer and magnetic beads to facilitate DNA cap-
ture. The DNA was then purified using the PurePrep 96 
system (Molgen, The Netherlands), which included two 
wash steps and elution in 65 µL of elution buffer.

For library preparation, the Illumina DNA Prep Kit 
was used according to the manufacturer’s protocol. DNA 
concentrations were normalized across all samples to 
ensure uniform library input. The tagmentation step was 

followed by PCR amplification using indexed adapters, 
allowing for sample multiplexing. Libraries were purified 
and pooled, and sequencing was performed on an Illu-
mina MiSeq platform using MiSeq V3 chemistry, gener-
ating 2 × 300 bp paired-end reads.

Metagenomic data processing and taxonomic profiling
The raw sequencing reads were subjected to quality con-
trol using the fastp tool, which filters out low-quality 
reads, trims adapter sequences, and removes reads that 
are too short [31]. High-quality reads were then pro-
cessed using Kraken2, which employs a custom-built 
database that includes sequences from Archaea, Bacte-
ria, Plasmids, Viruses, Fungi, and UniVec Core sequences 
to ensure comprehensive taxonomic assignment [32]. 
Potential contamination from human DNA was miti-
gated by including the GRCh38 human genome assem-
bly in the database [33]. Taxonomic classifications were 
refined using Bracken, which provides more accurate 
abundance estimates by re-estimating the assignments 
based on k-mer distributions [34]. All bioinformatics 
tools were managed through the Bioconda package man-
ager to ensure reproducibility [35].

Fecal imaging procedure
A standardized imaging protocol was used to ensure 
consistency [28]. Briefly, the fecal samples were smeared 
onto a custom-designed paper template featuring a cen-
tral square and fiducial markers at the corners (Fig. 1A). 
The thawed samples were evenly spread within the cen-
tral square using a disposable spatula, ensuring uniform 
coverage (Fig. 1B). Images of the smeared samples were 
captured using an iPad camera (8-megapixel camera, 9th 
generation, model MK2K3NF/A, Apple Inc., Cupertino, 
CA, USA) (Fig.  1C). These images were subsequently 
uploaded into the model for analysis.

Fig. 1  Adapted from Lee et al. [36]. (A) Paper template with feces applied within the borders of the square. (B) The fecal layer was smeared as evenly as 
possible using a disposable spatula. (C) Photograph of the smear including the fiducial marks
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Model analysis
A total of 123 fecal smear images were included in this 
study. To mitigate the potential confounding effects of 
color variations introduced by dietary markers, all the 
images were converted to grayscale. This preprocessing 
step ensured that color differences did not influence the 
model’s predictions, allowing the model to focus on tex-
tural and structural features of the fecal smears.

Feature extraction and model training
For training the model, the data from another study were 
used [29]. To amplify the contrast between high- and 
low-abundance samples, the images representing the top 
and bottom 20% of alpha diversity (Shannon index) were 

selected, resulting in a total of 204 training images. The 
pipelines used (Fig.  2) consisted of both ML- and DL-
based sections. We utilized a DL-based feature extraction 
approach based on multiple pretrained image classifi-
cation models. Features were extracted from the gray-
scale images using a pipeline employing five different 
pretrained Vision Transformer (ViT) models (Table  1), 
resulting in approximately 4,800 features per image. The 
features of each pretrained model represent the compre-
hensive information in the image data and are integrated 
into a classifier with ML methods.

The training dataset, consisting of 204 samples with 
4800 features each, is a high-dimensional, low-sample-
size (HDLSS) scenario with a high risk of overfitting. To 

Table 1  Pretrained vision transformer (ViT) models used for feature extraction
Model Dataset Use case
vit_tiny_patch16_224 [37] ImageNet dataset Lightweight vision tasks with faster inference, typically applied to 

ImageNet-like datasets.
vit_large_patch16_224. augreg_in21k_ft_in1k 
[37, 38]

ImageNet dataset A larger ViT model for general vision tasks, also trained on ImageNet.

vit_base_patch16_clip_224 [39] OpenAI’s CLIP dataset Utilizes CLIP’s dataset for vision tasks, focusing on robustness to out-
of-distribution data.

vit_base_patch16_224_dino [40] ImageNet dataset A self-supervised learning model, ideal for unsupervised applications 
beyond ImageNet-tasks

resnetv2_50 × 1_bit_distilled [41, 42] JFT-300 M dataset Optimized for transfer learning with large-scale datasets like JFT-300 M

Fig. 2  Pipeline of preprocessing, model training, and evaluation. During preprocessing, the study images were converted to grayscale; the images were 
then transformed into features. The features were extracted using five different pretrained Vision Transformer (ViT) models. Subsequently, least absolute 
shrinkage and selection operator (LASSO) regression with additional variance filtering for feature selection were applied, resulting in a reduction to a final 
feature set of 72 predictors
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prevent overfitting, we applied least absolute shrinkage 
and selection operator (LASSO) regression with addi-
tional variance filtering for feature selection [43]. This 
resulted in a reduction to a final feature set of 72 informa-
tive predictors. LASSO regression offers built-in feature 
selection by shrinking noninformative feature coefficients 
to zero, thus simplifying the model. Although Random 
Forest achieved a comparable predictive performance 
of the area under the curve (AUC ~ 0.77), its calibration 
properties were inferior to those of LASSO. This is dem-
onstrated by a higher expected calibration error (ECE) 
and a narrower range of predicted probabilities (Fig. 3). 
In addition, DL models require larger datasets to general-
ize effectively, which is not feasible for our dataset.

We employed a stratified cross-validation approach 
during model training on the source domain. The final 
model was then frozen and applied to the target/test 
domain. The classifier’s performance was evaluated using 
the area under the curve (AUC) operating characteristic 
curve, with stratified shuffling split cross-validation (20 
shuffles) ensuring robust assessment, with 30% of the 
data used as the test set [44]. Permutation testing (300 
permutations) was conducted to determine whether 
the observed performance was significantly better than 
random chance. P values of < 0.05 were considered sta-
tistically significant. Analysis and visualization were per-
formed using Python, PyTorch and Scikit-learn [45, 46]. 
AUC values greater than 0.8 were considered excellent, 
values between 0.7 and 0.8 were considered very good, 
values between 0.65 and 0.7 were considered good, val-
ues between 0.6 and 0.65 were considered moderate, and 
values less than 0.6 were considered poor for prediction.

The hyperparameters, including the variance threshold 
and regularization strength, were optimized using grid 
search within an inner stratified cross-validation loop. 
The hyperparameter set for LASSO (λ) and variance fil-
tering (γ) are as follows: the λ values are [0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 100] for the inverse regular-
ization strength of the classifier, and the γ values are set 
at [0.001, 0.01, 0.05, 1, 2, 2.5] for the variance threshold 
filter. After the model’s performance was evaluated, the 
final model was retrained on the entire dataset to pro-
duce the final predictive model. This model was subse-
quently used to evaluate the predictive performance for 
each bacterial genus in the study.

Genera Selection and Labeling.
To focus on bacterial genera that are both prevalent 

and abundant, we applied a two-step selection process. 
First, with sparsity filtering, the genera with more than 
50% sparsity, i.e., present in less than 50% of the samples, 
were filtered out. Second, of the remaining genera, the 
top 50 most abundant genera were selected on the basis 
of their average relative abundance.

For each selected bacterial genus, we defined binary 
labels to facilitate the classification task. Specifically, sam-
ples in the top 10% of abundance for a given genus were 
labeled “high,” and those in the bottom 10% were labeled 
“low”. This approach resulted in a total of 24 images out 
of 123 being used for high-low model prediction for each 
genus. The rationale behind this binary approach is based 
on model design and statistical power. For model design, 
most pretrained models are designed for classification 
tasks rather than regression. For statistical power, focus-
ing on the extremes of the data distribution (top and 

Fig. 3  Calibration curves of least absolute shrinkage and selection operator (LASSO) and random forest, including expected calibration error (ECE), dem-
onstrating a higher ECE and a narrower range of predicted probabilities for random forest than for LASSO
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bottom 10%) enhances the effect size, making it feasible 
to detect significant differences given the limited sample 
size.

Prediction of functional groups
We extended our analysis to predict functional groups 
of bacteria, specifically major butyrate producers, and a 
mixed group including fermenters, other SCFA produc-
ers and minor butyrate producers. The twenty-five suc-
cessful predictive genera (AUC > 0.6) were subsequently 
assigned to the (A) butyrate producer group or (B) mixed 
fermenter group. The assignment of genera was based 
on the main functions described in the literature [18, 
47–69]. Both groups were defined based on the sum of 
the relative abundances of their constituent genera. The 
group prediction tasks were subjected to the same pre-
processing, model training, and evaluation processes as 
genus prediction.

Model interpretation and robustness analysis
We investigated whether the model performance was 
influenced by external factors such as the smearing 
method, random noise, and the amount of feces. Figure 4 
illustrates how the smear affects the general shape of the 
feces on the paper, i.e., the global shape.

To assess the robustness and decision-making of the 
model, we conducted random noise intervention experi-
ments using blurring, Gaussian noise and scrambling of 
the images. Figure  5 illustrates how each intervention 
modifies the original image. Blurring applies a smooth-
ing effect to the images, reducing fine details by averag-
ing pixel values in a local region, and its intensity also 
increases globally. This experiment evaluates the impor-
tance of local information and image quality. Gaussian 
noise introduces random variations to the images with-
out directly altering image features. This is employed to 
evaluate the model’s robustness to random noise. Scram-
bling rearranges small patches of the images, disrupting 
the global shape. This approach assesses the effect of the 
overall shape created by smearing. At a scrambling size 
of 2 × 2, the image appears unchanged, and larger scram-
bling levels destroy both local and global features (Fig. 6).

Results
The pretrained model trained on 204 fecal images 
achieved an AUC of 0.77 ± 0.05 (Fig. 7). The permutation 
test yielded a p value less than 0.05, indicating that the 
model’s performance was statistically significant.

Figure  8 shows the AUC of the 50 selected genera 
based on their relative abundance. The genera that were 
predicted the best by our model (AUC > 0.8) included 
Coprococcus, Intestinimonas, Dysosmobacter, Faecaliba-
cillus, Ruminococcus and Flavonifractor.

The 25 genera assigned to the butyrate-producing gen-
era were as follows: Coprococcus, Intestinimonas, Dys-
osmobacter, Ruminococcus, Flavonifractor, Clostridium, 
Flintibacter, Catenibacterium, Butyrivibrio, Eubacte-
rium and Enterocloster. The mixed fermenter group 
included the following genera: Faecalibacillus, Vescimo-
nas Treponema, Ruthenibacterium, Phascolarctobacte-
rium, Oscillibacter, Pusillibacter, Pseudomonas, Bacillus, 
Streptomyces, Clostridioides, Sarcina, Candidatus, Wujia 
and Bacteroides. For predicting the butyrate producer 
and mixed fermenter groups, the model achieved AUCs 
of 0.75 and 0.81, respectively. Permutation tests of both 
analyses revealed p values < 0.05 (Fig. 9).

Figure  10 summarizes the results of the intervention 
experiments. In both the mixed fermenter and butyr-
ate producer groups, the blurring intervention resulted 
in a gradual decline in the AUC as the blurring radius 
increased. However, for both groups, the model’s per-
formance remains unchanged regardless of the noise 
size, indicating that the model is robust to noise. For the 
scrambling intervention, the performance remained sta-
ble up to 4 patches for the fermenter group and 2 patches 
for the butyrate group. With a small patch size, this inter-
vention alters the global shape, indicating that the shape 
created by smearing is insignificant. However, as the 
patch size increases, it starts to destroy both local and 
global features, resulting in a substantial decrease in the 
AUC for 8 patches in the fermenter group and 6 patches 
in the butyrate group.

Overall, the median amount of feces that was used in 
the smears was 1.9 g (range 0.36–5.4 g). In both the fer-
menter and butyrate producer groups, no correlation was 

Fig. 4  Smear direction affects the global shape of the smear image
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detected between the weight of the fecal smear and the 
prediction probabilities (Fig.  11). The Pearson correla-
tion coefficients (r) are 0.30 ± 0.3 (p > 0.1) and 0.04 ± 0.36 
(p > 0.5) for the butyrate producers and the mixed fer-
menter groups, respectively.

Discussion
This study introduces an advanced ML and DL approach 
(hereafter referred to as the ML/DL model) for the suc-
cessful prediction of ‘high-low’ bacterial genera and func-
tional groups in the microbiome from digital images of 

Fig. 6  Properties of image features and the effects of each intervention on local and global features: the blur diminishes local features by averaging 
pixel values within a radius. At smaller radii, it primarily affects local features, but as the radius increases, it starts to disrupt both local and global features. 
Scrambling at a small patch level disrupts only the global shape; however, as the patch size increases, it destroys both local and global features

 

Fig. 5  Overview of interventions on the original image, including Gaussian blur, Gaussian noise, and scrambling at different intervention levels. For il-
lustrative purposes, original colors are used. For the experiment, only grayscale images were used
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fecal smears from rhesus macaques. Major butyrate pro-
ducers and a group of mixed fermenters could be pre-
dicted. Additionally, our ML/DL model demonstrated 
promising predictive capabilities for several bacterial 
genera, highlighting its potential utility in microbiome 
analysis and veterinary diagnostics. Our data showed 

that the model was robust to the smearing method, ran-
dom noise and amount of fecal matter used for the smear. 
These results will accelerate the path toward routine 
clinical application of microbiome analysis using digital 
images.

In addition to individual genera, the model effectively 
predicted the presence of major butyrate producers, such 
as Coprococcus, Ruminococcus, Clostridium, Butyrivibrio 
and Eubacterium. The ability to predict butyrate-produc-
ing bacteria is clinically valuable, as these microbes play 
essential roles in maintaining colonic health, modulating 
immune responses, and protecting against gastrointesti-
nal disorders [18, 59]. A reduced abundance of butyrate 
producers has been associated with gastrointestinal dis-
orders and chronic diseases such as Long-Covid [70, 71].

The model achieved high predictive accuracy for sev-
eral important bacterial genera within the major butyr-
ate-producing group, with AUC values exceeding 0.80 for 
Coprococcus, Dysosmobacter, Intestinimonas, Rumino-
coccus, and Flavonifractor. The model’s ability to predict 
butyrate producers as a group and as distinctive gen-
era emphasizes its potential in assessing gut microbial 
functions related to butyrate production. Moreover, the 
model also demonstrated good predictive performance, 
with an AUC > 0.7, for genera in the mixed fermenter 
group, such as Faecalibacillus, Vescimonas, Treponema, 
Ruthenibacterium and Phascolarctobacterium.

Our results expand upon our previous work, where 
a limited number of genera were predicted from fecal 
images [28]. Our current study maximized the dataset 
size from 66 to 123 images by including images colored 
by the food-colorant marker [28]. In addition, by using 
an extensive human training dataset and employing mul-
tiple pretrained models, we demonstrated the ability to 

Fig. 8  Results of the area under the receiver operating characteristic curve (AUC) per predicted genus of the 50 most abundant genera. AUC values > 0.8 
were considered excellent; 0.7–0.8, very good; 0.65–0.7, good; 0.6–0.65, moderate; and < 0.6, poor for prediction

 

Fig. 7  The area under the receiver operating characteristic curve (AUC), 
presented as the mean ± SD, with a permutation test and its p value
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Fig. 10  The area under the curve (AUC) for different intervention methods and their levels. The difference between the baseline, i.e., the performance 
without intervention, and each AUC reflects the model’s robustness and the importance of certain image features

 

Fig. 9  The area under the receiver operating characteristic curve with a permutation test and its p value for the butyrate producer group (left) and the 
fermenter group (right)
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predict a broader range of bacterial genera and functional 
groups [29]. We used the human-derived dataset because 
of the similarity of many common genera that are shared 
between humans and other species [72]. Moreover, cap-
tivity tends to humanize the NHP microbiome, result-
ing in greater resemblance [2]. The main bacterial genera 
reported to be present in the gut microbiome of both 
NHPs and humans are Faecalibacterium, Prevotella, 
Bacteroides, Streptococcus, Treponema, Megasphaera, 
Bifidobacterium, Alistipes, Collinsella, Escherichia 
and Ruminococcus [2, 9]. This is in line with our data. 
Although there are inherent differences in microbiome 
profiles between humans and macaques, our study rep-
resents domain adaptation scenarios in which the source 
domain is derived from humans and the target domain is 
derived from macaques. Domain adaptation is commonly 
employed to align different datasets to apply models 
across both domains [73]. The results of our macaque test 
dataset indicate that this approach is applicable.

Within the constraints of the current dataset, we aimed 
to select functional groups to demonstrate the ability of 
our ML/DL model to discriminate groups. Although the 
Firmicutes/Bacteroidetes (F/B) ratio is a widely accepted 
marker in the human microbiome for maintaining nor-
mal intestinal homeostasis, this ratio does not reflect 
the same dynamics in rhesus macaques [74–76]. Human 
feces are dominated by Bacteroidetes, whereas rhesus 
macaque feces have a more evenly distributed relative 
abundance of Firmicutes and Bacteroidetes [31]. Since 
butyrate has known beneficial effects on colonic function 
in health and disease and is formed by certain members 
that generally form separate groups, we selected butyr-
ate-producing groups and mixed fermenters as alterna-
tive functional groups [77–79].

Compared with control animals without diarrhea, rhe-
sus macaques with chronic diarrhea present different gut 
microbiome signatures [9, 13, 14]. Consistent with our 
results, within the butyrate-producing group, Coprococ-
cus, Dysosmobacter, and Clostridium have been reported 
to differ significantly between animals with and without 
diarrhea [9, 14]. For the mixed fermenter group, even 
more genera corresponded with our results: Treponema, 
Oscillibacter, Pseudomonas, Bacillus, Streptomyces, Clos-
tridioides and Bacteroides [9]. Although other genera 
have also been reported, the above highlights the impor-
tance of detecting more genera or groups. These findings 
are valuable for diagnosing and monitoring gut health 
and demonstrate the clinical utility of our approach to 
fecal imaging.

The success in predicting both functional groups and 
bacterial genera likely originates from the model cap-
turing visual features influenced by microbial metabolic 
activities. Microbial enterotypes are correlated with 
both fecal consistency and color [80, 81]. Diet and sub-
sequent effects on the physiochemical colonic environ-
ment and metabolic byproducts can alter fecal pH and 
fecal consistency, affecting the texture and glossiness vis-
ible in images [82, 83]. Enhanced fermentation alters the 
physical structure of feces, potentially resulting in more 
homogeneous smears with distinct characteristics. This 
is supported by observations in NHPs, where stool con-
sistency was influenced by fiber intake: low-fiber diets 
resulted in clay-like stools, whereas high-fiber diets pro-
duced softer and bulkier stools [84].

Understanding the internal mechanisms of AI models 
is essential for their acceptance in clinical settings. The 
decisions made by AI models should be guided by rel-
evant biological data rather than spurious shortcuts or 
confounding factors. Research has shown that DL models 

Fig. 11  Correlations between the prediction probabilities and the total fecal weight used in the smear (in grams); r indicates the Pearson correlation 
coefficient (mean± sd), and p denotes the p value
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can sometimes rely on spurious shortcuts such as hos-
pital-specific imaging artifacts and patient positioning 
rather than true pathological signals [85]. Although less 
frequently reported, similar pitfalls have been observed 
in veterinary imaging studies on canine radiographs [86]. 
However, in image-based AI models, deriving factors that 
are invariant to confounding factors can reduce these 
irrelevant and biased associations [87]. In our study, 
potential confounders such as diet-related color, smear-
ing methods, and fecal weights were rigorously examined 
through preprocessing (grayscale) perturbation experi-
ments and correlation analysis. Our model demonstrated 
robust confounding effects from these confounders.

Another crucial consideration of AI models is their 
practical applicability. Defecation output and volume 
vary significantly across species and individuals. If a 
model’s predictions heavily depend on the fecal weight, 
this could substantially limit its practical use. Our mod-
el’s prediction was not dependent on the amount of fecal 
matter, as no correlation was observed between the fecal 
weight on the smear and the prediction probability.

Furthermore, images are sensory data obtained from 
cameras, each with different resolutions and levels of 
random noise [88]. Our perturbation experiments reveal 
that image blurring reduces model performance, high-
lighting the importance of high resolution in cameras. 
However, the model’s performance remained stable in 
the presence of random Gaussian noise, suggesting that 
while high camera resolution is crucial, random noise 
from the camera does not substantially impact the 
model. It is important to note that we have investigated 
the effects of Gaussian noise only, as Gaussian noise is 
a common occurrence in images. Other types of noise, 
such as structured noise or salt-and-pepper noise, were 
not explored in our study [88].

While our results are promising, it is important to 
acknowledge limitations. The sample size was relatively 
small, and further studies with larger macaque-specific 
datasets would be beneficial to validate our results and 
to refine our model further. It is possible that domain 
adaptation limits the detection of macaque-specific gen-
era. Currently, cohorts of humans, farms and companion 
animals are being collected and analyzed. Future studies 
should include cross-species validation.

Furthermore, focusing on the extremes of our data 
distribution, i.e., the top and bottom 10%, enhances the 
statistical power but results in a lack of generalizabil-
ity in the model. This binary classification threshold is 
inherently dataset dependent. However, this approach 
is common in exploratory microbiome studies to high-
light biologically meaningful differences. As our dataset 
expands and becomes more standardized, the thresh-
olds may be recalibrated, and the use of regression 

models to further refine the predictive performance can 
be explored.

Furthermore, this paper conceptualizes image prop-
erties into local and global features and conducts 
experiments on the basis of this framework. However, 
investigating how specific features, such as shape, color, 
granularity, and texture, e.g., consistency or smoothness, 
contribute to the model’s performance in detail would be 
valuable.

Specific bacterial genera can contribute to specific 
color changes in feces [80]. Yet, due the use of colored 
dietary markers, our fecal images had to be converted to 
grayscale images, possibly resulting in underperformance 
of the model.

The gut microbiome comprises at least 130 bacterial 
genera [89]. Although many abundant genera are identi-
fied by our model, this is still a small portion of the full 
extent of the gut microbiome. In addition, describing 
clear group functionality is challenging because bacteria 
can be functionally convergent, and the microbiota is a 
highly dynamic ecosystem [83, 90].

Compositional and functional alterations in the nor-
mal gut microbiome, i.e., dysbiosis, have been associated 
with various diseases in humans, companion animals and 
large animals [79, 91–97]. The high costs and prolonged 
turnaround times limit the clinical application of micro-
biome sequencing for patients [96]. Our approach could 
offer a cost-effective way to assess the impact of drug or 
nutritional interventions on the microbiome. In compan-
ion animal research where the gut microbiota is assessed, 
underpowered studies due to limited funding availability 
are not uncommon [93]. In addition, microbiome testing 
is a useful tool in veterinary medicine, as many diseases 
in many animal species are associated with gut imbal-
ances [91, 93, 94, 96]. Some of these imbalances can be 
detected via microbiome screening before a patient 
becomes symptomatic [93]. On the other hand, to evalu-
ate the effectiveness of interventions, it may be feasible 
to screen the microbiome before and after treatment 
[93, 98, 99]. Furthermore, longitudinal assessments of 
the gut microbiome in large human cohorts within citi-
zen science research potentially provide valuable insights 
through our affordable approach [100]. Currently, the 
dysbiosis index is an upcoming diagnostic tool for com-
panion animals to diagnose and follow up on interven-
tions [96, 98, 99, 101]. The dysbiosis index (DI) is based 
on quantitative PRC assays of bacterial groups on fecal 
DNA. As we are expanding our model with data from 
species other than macaques, we could predict DI for 
different animal species. Antibiotic treatments could be 
reduced, and patient-specific dietary interventions could 
be utilized more frequently, ultimately improving animal 
health and welfare through the introduction of this novel 
diagnostic tool.
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Conclusions
Our method not only detects important bacterial genera 
but also identifies microbial groups on the basis of their 
assigned function in the gut microbiome. In addition, 
the models were robust to the smearing method, random 
noise, and amount of fecal matter used for the smear. 
These findings demonstrate the potential of this method 
as a clinically applicable tool for rapid microbiome diag-
nosis in veterinary science. Furthermore, it provides a 
cost-effective approach for assessing the impact of drugs 
or nutrition interventions on the microbiome.
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