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Abstract 

The microbiome is well known to drive variation in host states (e.g. behaviour, immunity) that would be expected 
to modulate the spread of infectious disease—but the role of microbiotal interactions in promoting superspread-
ing is poorly understood. Superspreaders are individuals with a strongly disproportionate contribution to pathogen 
transmission, and come in two forms. Supershedders transmit infection to more individuals because they shed higher 
levels of pathogen. Supercontacters transmit infection to more individuals because they have larger numbers of social 
contacts. We explore associations between the gut microbiota and these two forms of superspreading in a wild rodent 
model—Bartonella spp. bacteraemia in the field vole (Microtus agrestis). We find evidence that individuals fall into dis-
tinct shedding and contacting clusters, and that higher-contacters have lower and more variable gut microbial alpha-
diversity than lower-contacters. We also show evidence that both higher-shedders and higher-contacters have distinct 
gut microbial composition and identify OTUs that are differentially abundant in the gut microbiota of these two classes 
of individuals when compared to lower-shedders and lower-contacters respectively. We find that the Muribaculaceae are 
associated with differences in both shedding and contacting, and discuss potential mechanisms by which they may be 
acting on these host traits.

Introduction
Two topics have particularly concerned epidemiologists 
in recent years: first, superspreaders and the underly-
ing drivers that define and determine a superspreader, 
and second, the gut microbiome and the role it plays in 
modulating immunity, infection and other aspects of 
health. Here, we bring these two topics together, using a 

tractable wild rodent system that mirrors less tractable 
medical and veterinary systems.

Superspreaders are individuals with a strongly dispro-
portionate contribution to pathogen transmission [1]. 
They are traditionally considered to come in two forms. 
Supershedders transmit infection to more individuals 
because they shed more infectious particles. Supercon-
tacters transmit infection to more individuals because 
they encounter more susceptible individuals [2].

The microbiome is well known to drive variation in 
host states (e.g., behaviour [3], or immunity [4]) that 
would be expected to modulate the spread of infectious 
disease—but the role of microbiotal interactions in pro-
moting superspreading by individuals is poorly under-
stood. The majority of the work that has been carried out 
has focussed on the gut microbiota’s involvement in the 
supershedding of enteric pathogens [5], although there 
has been some work on the modulation of pathogens 
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beyond the gut [6]. The gut microbiota has also been 
shown to play a role in modulating social behaviour via 
the gut-brain axis [3]. Yet, to our knowledge, no study has 
investigated the gut microbiota’s role in simultaneously 
modulating both supershedding and supercontacting. 
Addressing this gap is crucial, as it could have signifi-
cant implications for understanding disease transmission 
dynamics, enabling better prediction and subsequent 
control of disease spread.

Our model system is the field vole (Microtus agrestis) 
and one of its most common parasites, Bartonella spp. 
Our study sites are located in the Kielder Forest area of 
north-eastern England, where the ecology of M. agres-
tis is well studied (reviewed in [7]). Populations undergo 
locally synchronous multi-annual density fluctuations 
typically occurring every 3–4  years, and range in den-
sity from 5 to 770 voles per hectare on individual grassy 
patches. The voles have high fecundity but high popula-
tion turnover. They are infected by a range of pathogens 
and parasites. However, we focus here on Bartonella 
spp. due to the high prevalence of this infection in our 
study population and its amenability to measurement 
via non-destructive sampling of peripheral blood, allow-
ing repeat-sampling of individual hosts over time. Bar-
tonella are gram-negative bacteria that invade the host’s 
red blood cells, transmitted typically by fleas. Many Bar-
tonella species are the agents of disease (bartonellosis) in 
animals or, via zoonotic transmission, in man, with sig-
nificant health consequences not only for wildlife, but for 
domesticated animals and humans [8].

We employ a longitudinal study design on permanent 
trapping grids, sampling individual voles repeatedly to 
quantify Bartonella spp. infection intensity in the blood 
(a proxy for shedding) and trap sharing (a proxy for con-
tacting), and at the same time measuring gut microbiota 
composition. Our results suggest that individuals fall 
into distinct shedding and contacting clusters. We find 
that higher-contacters have lower gut microbial alpha-
diversity than lower-contacters. We also show that both 
higher-shedders and higher-contacters have distinct gut 
microbial composition and identify OTUs, the abun-
dance of which is characteristic of the gut microbiota of 
these two classes of individuals.

Methods
Field methods
Field methods for the longitudinal study design used here 
are fully described in [9]. Briefly, we studied M. agrestis in 
Kielder Forest, Northumberland, UK, using live-trapping 
of individual animals from natural populations. Trap-
ping was performed from March–October in 2015–2017 
across a total of seven different sites, each a forest clear-
cut. Access to the sites was provided by the Forestry 

Commission. At each site, up to 197 Ugglan small mam-
mal traps (Grahnab, Gnosjo, Sweden) were laid out in 
a grid, spaced approximately 3–5  m apart. Every other 
week, traps were checked twice daily, once in the morn-
ing and once in the evening. Newly trapped field voles 
were injected with a Passive Integrated Transponder 
(PIT) tag (AVID, Uckfield, UK) for re-identification. We 
also took a drop of blood from the tail which we put into 
500  μl of RNAlater (Fisher Scientific, Loughborough, 
UK) to quantify Bartonella spp. infection intensity (see 
below). For a subset of voles (n = 59) from a single site, we 
also collected a faecal sample for gut microbiota charac-
terisation. For logistical reasons, we restricted our faecal 
sampling to a single site. However, all of our sites were 
very similar—each is a forest clear-cut of similar size 
(approximately 1  hectare) with similar vegetation (pre-
dominantly grass). We therefore consider the subset of 
voles resident at this site to be representative of the larger 
vole population across sites.

Pathogen detection
Bartonella spp. infection intensity, which we take to 
reflect shedding potential, was quantified from the blood 
samples using quantitative real-time PCR (as set out in 
[9]). Infection intensity was expressed as the relative 
expression of Bartonella 16S rRNA normalised to host 
endogenous control genes and indexed to a calibrator 
sample via the 2−ΔΔCT method [9]. This was done for a 
total of 994 individuals, with the majority of individuals 
being blood sampled more than once (mean = 2.8; range 
1–11 blood samples per individual). Of these individu-
als, the majority were confirmed to be infected with Bar-
tonella spp. at some point (n = 800) and the majority of 
these were infected on the majority of captures (n = 647). 
We calculated mean Bartonella spp. infection intensity, 
as a proxy for shedding level, for these 647 individuals.

Social network
We constructed a trap-sharing network for all individuals 
(n = 2880) where individuals trapped in the same trap on 
the same day were considered connected. The strength of 
social association, or edge weight (E), between a pair of 
individuals was defined by the Simple Ratio Index (SRI 
[10]):

where x is the number of instances in which A and B 
were observed associated (trapped in the same trap on 
the same day), yAB is the number of instances in which 
both A and B were observed but not associated (trapped 
in different traps on the same day), yA is the number of 
instances in which only individual A was observed, and yB 

EAB =
x

x + yAB + yA + yB
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is the number of instances in which only B was observed. 
We then calculated the weighted degree for each individ-
ual (i.e. the sum of its edge weights) as a measure of its 
contacting level.

Gut microbiota profiling
The mean number of faecal samples collected per indi-
vidual was 2.95 (range 1–8). Microbiota methods for 
this dataset have been described previously in [11]. 
Briefly, DNA was extracted from faecal samples using the 
DNeasy Powersoil extraction kit (Qiagen Cat. 47,016) and 
sent for amplicon sequencing of the 16S rRNA gene (V4 
region; details of primers for every stage are provided in 
[11]). As described in [11], sequence data was processed 
through a custom analysis pipeline based on QIIME 1.9.1 
to infer operational taxonomic units (OTUs) and tax-
onomy assigned using the Greengenes database (version 
13.8). Read counts were centered log-ratio (CLR) trans-
formed using the SleuthALR package [12]. The package 
phyloseq was used to calculate measures of alpha- and 
beta-diversity [13].

Statistical analyses
Inferring shedding and contacting clusters
All statistical analyses were carried out in R 3.5.2 [14]. 
Shedding clusters were inferred using hierarchical clus-
tering analysis based on Ward’s distance on mean Bar-
tonella spp. infection intensity [15, 16]. We used the 
package hclust and the ‘ward.D’ implementation of 
Ward’s distance. An elbow plot of cluster distance vs. 
number of clusters was used to infer the optimum num-
ber of clusters by identifying the point at which the rate of 
change in distance between clusters decreases, creating 
an “elbow”. We used the same process on weighted degree 
to infer contacting clusters for the same individuals.

Analysing alpha‑diversity
Three metrics were chosen to assess different aspects of 
gut microbial alpha-diversity (within-sample diversity): 
Chao1 index, Shannon index and Simpson index. The 
Chao1 index is suitable for datasets skewed to low-abun-
dance taxa and is an indicator of species richness. Both 
the Shannon and Simpson index take into account the 
abundance of species and emphasise taxa evenness, but 
the Simpson index is more weighted on dominant species 
compared to the Shannon index. We used the lmer and 
anova functions in the package lme4 [17] to perform like-
lihood tests comparing a linear mixed effects model that 
included the cluster term to a null model with no fixed 
effects. In both models, vole identity was included as a 
random effect. We did this for the shedding cluster term 
and the contacting cluster term separately.

Analysing beta‑diversity
Three metrics were chosen to assess different aspects 
of beta-diversity (between-sample dissimilarity). Bray–
Curtis and weighted UniFrac (wUniFrac) distances were 
calculated and used in Non-Metric Multidimensional 
Scaling (NMDS) to provide individual scores (wUniFrac: 
K = 5, stress = 0.0012; Bray–Curtis: K = 3, stress = 0.164). 
In addition, robust principal component analysis (RPCA) 
was performed using the rospca package [18] and 10 prin-
cipal components were identified. More details are pro-
vided in [11]. Briefly, UniFrac distance incorporates OTU 
relatedness data from a provided phylogenetic tree, and 
wUniFrac adjusts this distance to reduce the influence of 
rare OTUs and alleviate any oversized influence of rare 
taxa by taking abundances into account. Bray–Curtis is 
an abundance-based metric, whereby distance values give 
a measure of between-sample dissimilarity, but which 
are sensitive to the presence of rare taxa. RPCA is also 
abundance-based, but can better deal with sparse, highly-
dimensional datasets. For each of these beta-diversity 
metrics, we performed a series of likelihood tests (one for 
each metric dimension) comparing a linear mixed effects 
model that included the cluster term to a null model 
with no fixed effects. In both models, vole identity was 
included as a random effect. P-values were corrected for 
multiple testing using the Benjamini–Hochberg correc-
tion. We did this for the shedding cluster term and the 
contacting cluster term separately.

Identifying indicator taxa
We performed an indicator species analysis to identify 
specific microbial OTUs that distinguish among clusters. 
Positively associated indicator taxa for different clusters 
were identified with the signassoc function in the indic-
species package [19]. We stratified by vole identity and 
ran 1,000 permutations to correct for multiple measure-
ments of the same individual. All p-values were adjusted 
with the Sidak correction to address multiple testing. We 
ran this analysis for the shedding cluster term and the 
contacting cluster term separately.

Results
Individuals fall into distinct shedding and contacting 
clusters
Mean Bartonella spp. infection intensity was 119.15 
(range = 0.14–5439.74). The optimum number of shed-
ding clusters was four: low-shedders (n = 224), low-inter-
mediate-shedders (n = 206), high-intermediate-shedders 
(n = 118) and high-shedders (n = 99; Fig S1, Fig. 1).

The contacting level (mean weighted degree) for 
those individuals infected with Bartonella spp. was 0.11 
(range = 0–1.38). The optimum number of contacting 
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clusters was four: non-contacters (n = 215), low-con-
tacters (n = 181), intermediate-contacters (n = 166) and 
high-contacters (n = 85; Fig S2, Fig. 2).

We found no association between an individual’s shed-
ding cluster and contacting cluster (df = 9; X2 = 8.53, 

Fig. 1  Individuals fall into distinct shedding clusters. A Dendrogram showing how individuals were clustered into four shedding clusters 
using hierarchical clustering: low-shedders (LS; n = 224), low-intermediate-shedders (LIS; n = 206), high-intermediate-shedders (HIS; n = 118) 
and high-shedders (HS; n = 99). B Log mean Bartonella spp. infection intensity as a function of shedding cluster. Large circles are means; small circles 
are individuals; bars show plus or minus two standard deviations

Fig. 2  Individuals fall into distinct contacting clusters. A Dendrogram showing how individuals were clustered into four contacting clusters using 
hierarchical clustering: non-contacters (NC; n = 215), low-contacters (LC; n = 181), intermediate-contacters (IC; n = 166) and high-contacters (HC; 
n = 85). B Log weighted degree as a function of contacting cluster. Large circles are means; small circles are individuals; bars show plus or minus two 
standard deviations
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p = 0.48; Table  S1). We therefore considered shedding 
and contacting clusters separately in onward analyses.

Higher‑contacters have lower and more variable gut 
microbial alpha‑diversity than lower‑contacters
Among the 59 individuals with microbiota metadata, 
there were small numbers of individuals in some clusters. 
We therefore combined clusters which were most similar 
to each other according to our hierarchical clustering (i.e. 
LS/LIS and HS/HIS for shedding, NC/LC/IC for contact-
ing) to achieve two clusters for shedding (a lower-shed-
der cluster and higher-shedder cluster); and two clusters 
for contacting (a lower-contacter and higher-contacter 
cluster; see Table S2).

We found that the model with shedding cluster was 
no better than the null model without shedding cluster 
across all three alpha-diversity metrics tested (Chao1: 
X
2 = 0.79; p = 0.37; Shannon: X2 = 1.37; p = 0.24; Simp-

son: X2 = 0.22; p = 0.64; likelihood tests of linear mixed 
effects models). While the model with contacting clus-
ter was no better than the null model without contact-
ing cluster for the Chao index ( X2 = 0.24; p = 0.62), we 
found that the model with contacting cluster was better 
than the null model without contacting cluster for the 
Shannon index and the Simpson index (the indices which 
are weighted on dominant species; Shannon: X2 = 4.75, 
p = 0.03; Simpson: X2 = 5.72, p = 0.02; likelihood tests of 
linear mixed effects models); with the higher-contacter 
cluster having a lower Shannon index and Simpson index 

than the lower-contacter cluster (Fig.  3). We also found 
differences in Shannon index and Simpson index vari-
ability, with a significantly higher coefficient of variation 
within the high-contacter cluster than within the lower-
contacter cluster (Shannon: A2 = 13.03, p < 0.001; Simp-
son: A2 = 29.13, p < 0.001; asymptotic tests for equality of 
coefficients of variation).

Higher‑contacters and higher‑shedders both have distinct 
gut microbial composition
After correcting for multiple testing, we found that the 
model with shedding cluster was no better than the null 
model without shedding cluster across all beta-diversity 
metrics tested (Bray–Curtis, wUniFrac and RPCA; like-
lihood tests of linear mixed effects models; Table  S3). 
While the model with contacting cluster was also no 
better than the null without contacting cluster across 
most beta-diversity metrics, we found that the model 
with contacting cluster was significantly better than 
the null model without contacting cluster for principal 
component 5 from the RPCA (RPC5) ( X2 = 10.59; cor-
rected p = 0.01; likelihood tests of linear mixed effects 
models; Table  S4), with the higher-contacter cluster 
having a higher RPC5 score than the lower-contacter 
cluster (Fig.  4). RPCA is abundance-based and deals 
well with sparse, high-dimensional datasets. RPC5 rep-
resents 7% of total variance. The OTUs showing the 
strongest representation in RPC5 (i.e. the 10 lowest and 

Fig. 3  Gut microbial community alpha-diversity varies between contacting clusters. A Shannon index and B Simpson index as a factor 
of contacting cluster. Large circles are means; small circles are samples; bars show plus or minus two standard deviations
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10 highest loading values) are dominated by the fam-
ily Muribaculaceae (n = 11/20 lowest/highest loadings; 
Table S5).

We followed this up with an indicator species analy-
sis to identify microbial OTUs that distinguish among 
contacting clusters. We found 11 OTUs were associ-
ated with contacting cluster. Six of these were sig-
nificantly more abundant in higher-contacters than 
lower-contacters, and 5 were significantly more abun-
dant in lower-contacters than higher-contacters. 
The most common (known) microbial family among 
these 11 OTUs was, again, Muribaculaceae (n = 6/11; 
Table S6), with almost all OTUs belonging to this fam-
ily being more abundant in lower-contacters (n = 5; 
Table S6). We also found that 21 OTUs were associated 
with shedding cluster. Thirteen of these were signifi-
cantly more abundant in higher-shedders than lower-
shedders, and 8 were significantly more abundant in 
lower-shedders than higher-shedders. The most com-
mon (known) microbial family among these 21 OTUs 
was, once more, Muribaculaceae (n = 8/21; Table  S6), 
with slightly more OTUs belonging to this family being 
more abundant in higher-shedders (n = 5) than lower-
shedders (n = 3; Table S6). One OTU in this family was 
associated with both contacting cluster and shedding 
cluster—it was more abundant in both higher-shedders 
(p = 0.02) and higher-contacters (p = 0.02; permutation 

p-values of the association between a species vector and 
a vector of memberships to a group; Table S6).

Discussion
In this study, we explored associations between the gut 
microbiota and both forms of superspreading (super-
shedding and supercontacting) by drawing on a rare 
example of a longitudinal dataset collected in the wild, 
which includes gut microbiota, pathogen shedding and 
social contacting information for individuals. This has 
allowed us to describe, for the first time in a wild popula-
tion, evidence that both shedding and contacting clusters 
have distinct gut microbial composition and to identify 
indicator OTUs for each of these clusters.

A lack of microbial diversity in the gut can lead to pro-
liferation of unhelpful or harmful bacteria, known as 
dysbiosis [20]. As well as low microbial diversity, a sig-
nature of dysbiosis is high variability in microbial com-
munities—we observe both of these signatures here in 
higher-contacters. Furthermore, despite finding no over-
all relationship between an individual’s shedding and 
contacting cluster, our study suggests that gut microbiota 
composition is a potential factor driving both compo-
nents of superspreading. On the family level, we find that 
the Muribaculaceae are associated with differences in 
both shedding and contacting and, at the OTU level, we 
identify indicator OTUs that are more abundant in both 
higher-shedder and higher-contacter individuals. These 
individuals pose the highest risk and have the poten-
tial to have a profound impact on transmission. Whilst 
we are not able to make direct inferences about causal 
mechanisms here, nonetheless the Muribaculaceae fam-
ily exhibit many functional properties that could affect 
immunity and behaviour. For example, Muribaculaceae 
are primary fermenters capable of producing acetate, 
propionate and succinate [21]. Succinate in particular 
is known to trigger the Th2 immune response, via the 
SUCNR1 receptor on intestinal tuft cells, with poten-
tial implications for susceptibility to infection [22, 23]. 
This family could therefore be shaping an individual’s 
shedding level through its effects on the Th2 immune 
response. This could also have consequences for an indi-
vidual’s contacting level, as differences in Th2 immune 
response have also been associated with differences in 
anxiety-like behaviour [24].

Our study is associative—while the associations we 
describe here could be the result of the gut microbiota 
driving these differences in superspreading potential, 
they could also result from a third (confounding) factor 
influencing both the gut microbiota and superspreading 
potential independently. However, in our previous work, 
we have already explored associations between such 

Fig. 4  Gut microbial community composition varies 
among contacting clusters. Principal component 5 of RPCA (RPC5) 
score as a factor of contacting cluster. Large circles are means; small 
circles are samples; bars show plus or minus two standard deviations
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potential confounding factors and the gut microbiota 
in this dataset. We have found only a small number of 
OTUs that are strongly associated with sex and no evi-
dence for significant associations with scaled mass index 
(SMI; a measure of condition) or Julian date (a measure 
of seasonality). Instead, we have shown that individual 
ID explains the largest proportion of variation in most 
OTUs, indicating a substantial level of within-individual 
consistency in microbiome structure [11]. Furthermore, 
the close link between the host immune system and gut 
microbiota is now well recognised [4]. Gut microbiota 
composition could therefore influence Bartonella shed-
ding through immunological mechanisms. For example, 
previous work on another blood parasite (Plasmodium 
spp.) demonstrated that gut microbes modulate the 
humoral immune response, leading to differences in 
malaria burden among mice [6]. The concept of the gut-
brain axis is also well-established and past studies have 
demonstrated the ability of the gut microbiota to influ-
ence an individual’s behaviour [3]. The gut microbiota 
could therefore influence social contacting of voles via 
the gut-brain axis. The next step would be to confirm 
causality. This could be done through faecal microbiota 
transplant (FMT) experiments.

One limitation of our study was that many of the taxa 
associated with the field vole gut remain less-well or un-
described in databases like Greengenes, often only being 
described to family level. This limitation arises because 
many existing databases are primarily built from well-
characterised microbiota, often associated with model 
organisms. In the future, as new, more comprehensive 
databases emerge—ones that are based on a broader 
range of microbial communities and better suited to the 
study of microbiota associated with non-model organ-
isms—they could offer more accurate and detailed taxo-
nomic information for studies like ours. Our study was 
also limited in resolution as we used standard 16S rRNA 
sequencing. Future work could utilise higher resolution 
metagenomic data to identify more indicator species, 
and indicator strains. Metagenomic data and other omics 
datasets (e.g. transcriptomics, metabolomics) could also 
be used to interrogate whether and how these taxa may 
be driving differences in host shedding and contacting 
through functional analysis.

If superspreaders could be identified from their gut 
microbial signatures, this information could be used to 
take action to limit superspreading and better manage 
transmission risk in animal populations, improving the 
effectiveness of disease control programmes. More spe-
cifically, gut microbial signatures could be used to iden-
tify superspreaders and to remove them, or to inform 
manipulations of the microbiome to limit transmission.
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